精英家教网 > 初中数学 > 题目详情
13.一个不透明的袋子,装了除颜色不同,其他没有任何区别的红色球3个,绿色球4个,黑色球7个,黄色球2个,从袋子中随机摸出一个球,摸到黑色球的概率是$\frac{7}{16}$.

分析 先求出球的总数,再根据概率公式即可得出结论.

解答 解:∵红色球3个,绿色球4个,黑色球7个,黄色球2个,
∴球的总数=3+4+7+2=16,
∴摸到黑色球的概率=$\frac{7}{16}$.
故答案为:$\frac{7}{16}$.

点评 本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为0<a<6.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是(  )
A.7B.8C.7$\sqrt{2}$D.7$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.
(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.
①求证:BD⊥CF;
②当AB=2,AD=3$\sqrt{2}$时,求线段DH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.二次函数y=x2+2x-3的开口方向、顶点坐标分别是(  )
A.开口向上,顶点坐标为(-1,-4)B.开口向下,顶点坐标为(1,4)
C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(-1,-4)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,直线a∥b,直线c与直线a,b相交,若∠1=56°,则∠2等于(  )
A.24°B.34°C.56°D.124°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.计算:$\frac{5{c}^{2}}{6ab}•\frac{3b}{{a}^{2}c}$=$\frac{5c}{2{a}^{3}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.先化简,再求值:$(\frac{1}{x}-\frac{1}{x+2})•\frac{{{x^2}-4}}{2}$,其中x=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.在等腰三角形ABC中,AB=AC,分别在射线AB、CA上取点D、E,连结DE,过点E作EF∥AB交直线BC于点F,直线BC与DE所在直线交于点M.
猜想:如图①,点D在边AB延长线上,点E在边AC上,且BD=CE,则线段DM、EM的大小关系为DM=EM.
探究:如图②,点D、E分别在边AB、CA延长线上,且BD=CE,判断线段DM、EM的大小关系,并加以证明.
拓展:如图③,点D在边AB上(点D不与点A、B重合),点E在边CA的延长线上,其它条件不变,若BD=1,CE=4,DM=0.7,则线段DE的长为2.1.

查看答案和解析>>

同步练习册答案