精英家教网 > 初中数学 > 题目详情
已知抛物线y=x2+mx-2m2(m≠0).
(1)求证:该抛物线与x轴有两个不同的交点;
(2)过点P(0,n)作y轴的垂线交该抛物线于点A和点B(点A在点P的左边),是否存在实数m、n,使得AP=2PB?若存在,则求出m、n满足的条件;若不存在,请说明理由.
(1)证明:△=m2-4×1×(-2m2)=9m2
∵m≠0,∴△>0,
∴该抛物线与x轴有两个不同的交点;

(2)由题意易知:点A、B的坐标满足方程:x2+mx-2m2=n,即x2+mx-(2m2+n)=0
由于方程有两个不相等的实数根,
因此△>0,即m2-4×1×[-(2m2+n)]>0?9m2+4n>0,①
由求根公式可知两根为:xA=
-m-
9m2+4n
2
xB=
-m+
9m2+4n
2

AB=xB-xA=
-m+
9m2+4n
2
-
-m-
9m2+4n
2
=
9m2+4n

PB=xB-xP=
-m+
9m2+4n
2
-0=
-m+
9m2+4n
2

分两种情况讨论:
第一种:如图1,点A在点P左边,点B在点P的右边
∵AP=2PB
∴AB=3PB
9m2+4n
=3×
-m+
9m2+4n
2
?
9m2+4n
=3m
.②
∴m>0.③
由②式可解得n=0.④
第二种:如图2,点A、B都在点P左边
∵AP=2PB
∴AB=PB
9m2+4n
=0-
-m+
9m2+4n
2
?3
9m2+4n
=m
.⑤
∴m>0.⑥
由⑤式可解得n=-
20
9
m2.⑦
综合①③④⑥⑦可知,满足条件的点P存在,此时m、n应满足条件:m>0,n=0或n=-
20
9
m2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=(t+1)x2+2(t+2)x+
3
2
在x=0和x=2时的函数值相等.
(1)求二次函数的解析式;
(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(-3,m),求m和k的值;
(3)设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n(n>0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+6向上平移n个单位.请结合图象回答:当平移后的直线与图象G有公共点时,求n的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3).
(1)求抛物线的解析式;
(2)设抛物线顶点为D,△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.
(3)若点P为第一象限抛物线上一动点,连接BP、PE,求四边形ABPE面积的最大值,并求此时P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△AOB中,∠A=90°,以O为坐标原点建立直角坐标系,使点A在x轴正半轴上,OA=2,AB=8,点C为AB边的中点,抛物线的顶点是原点O,且经过C点.
(1)填空:直线OC的解析式为______;抛物线的解析式为______;
(2)现将该抛物线沿着线段OC移动,使其顶点M始终在线段OC上(包括端点O、C),抛物线与y轴的交点为D,与AB边的交点为E;
①是否存在这样的点D,使四边形BDOC为平行四边形?如存在,求出此时抛物线的解析式;如不存在,说明理由;
②设△BOE的面积为S,求S的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx经过点A(-3,-3)和点P(x,0),且x≠0.
(1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最______值,值是______;
(2)若x=-4,求抛物线的解析式;
(3)请观察图象:当x______,y随x的增大而增大;当x______时,y>0;当x______时,y<0.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=mx2+nx+p与y=x2+6x+5关于y轴对称,与y轴交于点M,与x轴交于点A和B.
(1)y=mx2+nx+p的解析式为______,试猜想出与一般形式抛物线y=ax2+bx+c关于y轴对称的二次函数解析式为______.
(2)A,B的中点是点C,则sin∠CMB=______.
(3)如果过点M的一条直线与y=mx2+nx+p图象相交于另一点N(a,b),a,b满足a2-a+m=0,b2-b+m=0,则点N的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2经过点(1,5),当y=15时,求x的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,用一块长为50cm、宽为30cm的长方形铁片制作一个无盖的盒子,若在铁片的四个角截去四个相同的小正方形,设小正方形的边长为xcm.
(1)底面的长AB=______cm,宽BC=______cm(用含x的代数式表示)
(2)当做成盒子的底面积为300cm2时,求该盒子的容积.
(3)该盒子的侧面积S是否存在最大的情况?若存在,求出x的值及最大值是多少?若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某养殖专业户计划利用房屋的一面墙修造如图所示的长方体水池,培育不同品种的鱼苗.他已准备可以修高为3m.长30m的水池墙的材料,图中EF与房屋的墙壁互相垂直,设AD的长为xm.(不考虑水池墙的厚度)
(1)请直接写出AB的长(用含有x的代数式表示);
(2)试求水池的总容积V与x的函数关系式,并写出x的取值范围;
(3)如果房屋的墙壁可利用的长度为10.5m,请利用函数图象与性质求V的最大值.

查看答案和解析>>

同步练习册答案