精英家教网 > 初中数学 > 题目详情
19.如图所示,在△ABC=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F.
(1)求∠ABE的度数;
(2)求DC的长;
(3)求△ACF与△BDF的周长之和是多少?

分析 (1)根据旋转角的定义进行解答;
(2)根据旋转的性质得到∠CBD=60°,BC=BD,然后根据等边三角形的判定方法判断△BCD是等边三角形,则等边三角形的三条边相等;
(3)先根据勾股定理计算出AB=13cm,再利用三角形周长定义得到△ACF与△BDF的周长之和=AC+CD+AB+BD,接着由△BCD为等边三角形得到CD=BC=BD=12,于是计算出△ACF与△BDF的周长之和.

解答 解:(1)如图,∵将△ABC绕点B顺时针旋转60°,得到△BDE,
∴∠ABE=60°;

(2)∵△ABC绕点B顺时针旋转60°,得到△BDE,
∴∠CBD=60°,BC=BD=12cm,
∴△BCD为等边三角形,
∴DC=BC=12cm;

(3)在Rt△ABC中,∵∠ACB=90°,AC=5cm,BC=12cm,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=13(cm),
∵△ACF与△BDF的周长之和=AC+CF+AF+DF+BD+BF=AC+CD+AB+BD,
∵△BCD为等边三角形,
∴CD=BC=BD=12,
∴△ACF与△BDF的周长之和=5+12+13+12=42(cm).

点评 本题考查了三角形综合题,需要掌握旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.还需要熟悉勾股定理的应用,难度不大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.长沙某校准备组织学生及学生家长到井冈山进行社会实践,为了便于管理,所有人员必须乘坐在同一列火车上;根据报名人数,若都买一等座单程火车票需17010元,若都买二等座单程火车票且花钱最少,则需11220元;已知学生家长与教师的人数之比为2:1,长沙到井冈山的火车票价格(部分)如下表所示:
运行区间公布票价学生票
上车站下车站一等座二等座二等座
长沙井冈山81(元)68(元)51(元)
(1)参加社会实践的老师、家长与学生各有多少人?
(2)由于各种原因,二等座火车票单程只能买x张(x小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.甲仓库有水泥110吨,乙仓库有水泥70吨,现要将这些水泥全部运往A,B两工地,调运任务承包给某运输公司.已知A工地需水泥100吨,B工地需水泥80吨,从甲仓库运往A,B两工地的路程和每吨每千米的运费如表:
路程(千米)运费(元/吨.千米)
甲仓库乙仓库甲仓库乙仓库
A地252010.8
B地20151.21.2
(1)设甲仓库运往A地水泥x吨,则甲仓库运往B地水泥110-x吨,乙仓库运往A地水泥100-x吨,乙仓库运往B地水泥x-30吨(用含x的代数式表示);
(2)求总运费W关于x的函数关系式,并求出自变量的取值范围;
(3)当甲、乙两仓库各运往A,B两工地多少吨水泥时,总运费最省?最省的总运费是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图1,直线l交x轴于点D,与反比例函数y=$\frac{k}{x}$(k>0)的图象交于两点A、E、AG⊥x轴,垂足为点G,S△AOG=3
(1)k=6;
(2)求证:AD=CE;
(3)如图2,若当E为平行四边形OABC的对角线AC的中点,求平行四边形OABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图1,AB为⊙O的直径,弦CD⊥AB,垂足为点E,连接AC,AD,点P为直径AB上一点(不与点A,B重合),过点P的直线与弦AC相交于点F,与⊙O相交于点M,点N,且PF=AF.
(1)求证:MN∥AD;
(2)如图2,连接DN,若MF=DN,求证:$\widehat{CM}=\widehat{CD}$;
(3)如图3,在(2)的条件下.过点C作MN的垂线,分别与AB,AD,⊙O相交于点K,点H,点G,连接BC,若BC=5,CG=11,求弦DN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.某装修公司计划用宽为3x米,长为10x米的塑料扣板给一座科技楼的顶棚装修,已知这座楼的长为5ax米,宽为3ax米,如果你是采购员,应该购买多少块这样的塑料扣板?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.把下列各式因式分解.
(1)a2b2-3ab;
(2)2m3-4m2
(3)x2y-5xy+2y.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,一次函数y=x+2与x轴交于点A,与y轴交于点B,一抛物线的顶点在直线AB上,形状与函数y=-$\frac{1}{2}$x2图象相同,它与x轴分别交于点C、D(点C在点D的左侧),抛物线的顶点为点E.
(1)写出点A、B的坐标;
(2)当点C与点A关于原点对称时,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在直角坐标系中,△ABC的顶点A(-2,0),B(2,4),C(4,0).
(1)求△ABC的面积;
(2)点D为y轴负半轴上一动点,连接BD交x轴于点E,是否存在点D使得S△ADE=S△BCE?若存在,请求出点D的坐标;若不存在,请说明理由;
(3)若点A、B、C为平行四边形的三个顶点,试写出第四个顶点P的坐标,你的答案唯一吗?
(4)求出(3)中平行四边形的面积.

查看答案和解析>>

同步练习册答案