精英家教网 > 初中数学 > 题目详情
16、如图,OB是⊙O的半径,点C、D在⊙O上,∠DCB=27°,则∠OBD=
63
 度.
分析:根据圆周角定理可得∠DOB=2∠DCB,再根据等边对等角可得∠ODB=∠OBD,进而得到∠OBD=(180°-∠DOB)÷2,即可得到答案.
解答:解:∵∠DCB=27°,
∴∠DOB=2∠DCB=27°×2=54°,
∵OD=OB,
∴∠ODB=∠OBD,
∴∠OBD=(180°-∠DOB)÷2=(180°-54°)÷2=63°.
故答案为:63°.
点评:此题主要考查了圆周角定理与等腰三角形的性质,关键是找准角之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,直角三角形AOB的两直角边OA、OB分别在x轴的正半轴和y轴的负半轴上,C为线精英家教网段OA上一点,OC=OB,抛物线y=x2-(m+1)x+m(m是常数,且m>1)经过A、C两点.
(1)求出A、B两点的坐标(可用含m的代数式表示);
(2)若△AOB的面积为2,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△OAB是边长为4+2
3
的等边三角形,其中O是坐标原点,顶点B在y轴的正半轴上.将△精英家教网OAB折叠,使点A与OB边上的点P重合,折痕与OA、AB的交点分别是E、F.如果PE∥x轴,
(1)求点P、E的坐标;
(2)如果抛物线y=-
1
2
x2+bx+c经过点P、E,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•深圳)已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1).
(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式.
(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.
①当△BDE是等腰三角形时,直接写出此时点E的坐标.
②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•抚顺)如图,等边△OAB的边OB在x轴的负半轴上,双曲线y=
k
x
过OA的中点,已知等边三角形的边长是4,则该双曲线的表达式为(  )

查看答案和解析>>

科目:初中数学 来源:第26章《二次函数》中考题集(46):26.3 实际问题与二次函数(解析版) 题型:解答题

如图,△OAB是边长为4+2的等边三角形,其中O是坐标原点,顶点B在y轴的正半轴上.将△OAB折叠,使点A与OB边上的点P重合,折痕与OA、AB的交点分别是E、F.如果PE∥x轴,
(1)求点P、E的坐标;
(2)如果抛物线y=-x2+bx+c经过点P、E,求抛物线的解析式.

查看答案和解析>>

同步练习册答案