某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.
(1)求这两种商品的进价.
(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?
(1)商品的进价为40元,乙商品的进价为80元。
(2)有三种进货方案:
方案1,甲种商品30件,乙商品70件;
方案2,甲种商品31件,乙商品69件;
方案3,甲种商品32件,乙商品68件。
方案1可获得最大利润,最大=4700。
解析分析:(1)设甲商品的进价为x元,乙商品的进价为y元,就有,3x+y=200,由这两个方程构成方程组求出其解即可。
(2)设购进甲种商品m件,则购进乙种商品(100﹣m)件,根据不少于6710元且不超过6810元购进这两种商品100的货款建立不等式,求出其值就可以得出进货方案,设利润为W元,根据利润=售价﹣进价建立解析式就可以求出结论。
解:(1)设甲商品的进价为x元,乙商品的进价为y元,由题意,得
,解得:。
答:商品的进价为40元,乙商品的进价为80元。
(2)设购进甲种商品m件,则购进乙种商品(100﹣m)件,由题意,得
,解得:。
∵m为整数,∴m=30,31,32。
∴有三种进货方案:
方案1,甲种商品30件,乙商品70件;
方案2,甲种商品31件,乙商品69件;
方案3,甲种商品32件,乙商品68件。
设利润为W元,由题意,得,
∵k=﹣10<0,∴W随m的增大而减小。
∴m=30时,W最大=4700。
科目:初中数学 来源: 题型:解答题
某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120,具有一次函数的关系,如下表所示.
x | 50 | 60 | 90 | 120 |
y | 40 | 38 | 32 | 26 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
在“美丽广西,清洁乡村”活动中,李家村村长提出了两种购买垃圾桶方案;方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元;方案2:买不分类垃圾桶,需要费用1000元,以后每月的垃圾处理费用500元;设方案1的购买费和每月垃圾处理费共为y1元,交费时间为x个月;方案2的购买费和每月垃圾处理费共为y2元,交费时间为x个月.
(1)直接写出y1、y2与x的函数关系式;
(2)在同一坐标系内,画出函数y1、y2的图象;
(3)在垃圾桶使用寿命相同的情况下,哪种方案省钱?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
学校准备购买一批乒乓球桌.现有甲、乙两家商店卖价如下:甲商店:每张需要700元.乙商店:交1000元会员费后,每张需要600元.设学校需要乒乓球桌x张,在甲商店买和在乙商店买所需费用分别为y1、y2元.
(1)分别写出y1、y2的函数解析式.
(2)当学校添置多少张时,两种方案的费用相同?
(3)若学校需要添置乒乓球桌20张,那么在那个商店买较省钱?说说你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
在Rt△ABC中,∠ACB=90°,BC=30,AB=50,点P是AB边上任意一点,直线PE⊥AB,与边AC相交于E,此时Rt△AEP∽Rt△ABC,点M在线段AP上,点N在线段BP上,EM=EN,EP:EM=12:13.
(1)如图1,当点E与点C重合时,求CM的长;
(2)如图2,当点E在边AC上时,点E不与点A,C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:单选题
二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论错误的是( )
A.c>0 | B.2a+b=0 | C.b2﹣4ac>0 | D.a﹣b+c>0 |
查看答案和解析>>
科目:初中数学 来源: 题型:单选题
如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是( )
查看答案和解析>>
科目:初中数学 来源: 题型:单选题
如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,作EF⊥AE交∠BCD的外角平分线于F,设BE=x,△ECF的面积为y,下列图象中,能表示y与x的函数关系的图象大致是( )
A. B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com