【题目】如图,小明同学将五个正方形按图1所示位置摆放后发现中间空白处是边长为3的小正方形,根据这个信息,小明设右下角的最小的正方形边长为x:
(1)则右上角最大的正方形边长为 ;
(2)求拼成的大长方形的长和宽分别为多少?
(3)小明又将四个长为a,宽为b的小长方形放到图2中的长方形中,得到如图2所示的图形,则图形Ⅰ和图形Ⅱ的周长之和是 .
【答案】(1)(x+9);(2)长为39,宽为33;(3)4n
【解析】
(1)最右下角的小正方形与它左边的小正方形边长同为x,从下方中间的小正方形开始顺时针数过去,每一个都比前一个边长大3.
(2)用不同方法表示AD和EG,列方程求出x,即可求出大长方形的长和宽.
(3)用m、n表示图形Ⅰ和图形Ⅱ的长宽,然后计算即可.
解:(1)如图1,∵AB=BC=x,
∴CD=x+3,
∴EF=x+3+3=x+6,
∴FG=x+6+3=x+9,
故答案为:(x+9);
(2)由(1)得:AD=x+x+x+3=3x+3,EG=x+6+x+9=2x+15,
∵AD=EG,
∴3x+3=2x+15,
解得:x=12,
∴AD=3x+3=39,DE=x+3+x+6=2x+9=33,
∴长方形长为39,宽为33;
(3)如图,AB=n﹣2b,BC=a,DE=n﹣a,EF=2b,
∴C=2(AB+BC)+2(DE+EF)=2(n﹣2b+a)+2(n﹣a+2b)=4n.
科目:初中数学 来源: 题型:
【题目】如图,是的直径,、是弧(异于、)上两点,是弧上一动点,的角平分线交于点,的平分线交于点.当点从点运动到点时,则、两点的运动路径长的比是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线l:y=x﹣3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中b的值为( )
A. 5B. 4C. 3D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现定义运算:对于任意有理数a、b,都有ab=ab-b,如:23=2×3-3,请根据以上定义解答下列各题:
(1) 2(-3)=___________,x(-2)=___________;
(2) 化简:[(-x)3] (-2);
(3) 若x =3(-x),求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知数轴上有、两个点对应的数分别是、,且满足;
(1)求、的值;
(2)点是数轴上、之间的一个点,使得,求出点所对应的数;
(3)点,点为数轴上的两个动点,点从点以3个单位长度每秒的速度向右运动,点同时从点以2个单位长度每秒的速度向左运动,设运动时间为秒,若,求时间的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】长为1,宽为a的矩形纸片(),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a的值为( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,边长为4,对角线AC、BD交于点O,点E是BC边上任意一点,分别向BD、AC作垂线,垂足分别为F、G,则四边形OFEG的周长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得≌ 即可得,则可证得为的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OE∥AB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得与的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
试题解析:(1)证明:连接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切线;
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为
【题型】解答题
【结束】
25
【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com