精英家教网 > 初中数学 > 题目详情
两个数相差左,设其中较大的一个数为x,那么它们的积y是如何随x的变化而变化的?你能分别用函数表达式、表格和图象表示这种变化吗?
(1)用函数表达式表示:y=______;
(左)用表格表示:
x
y
(3)用图象表示.
(4)根据以上三种表示方式回答下列问题:
①自变量x的取值范围是什么?
②图象的对称轴和顶点坐标分别是什么?
③如何描述y随x的变化而变化的情况?
④你是分别通过哪种表示方式回答上面三个问题的?
(1)y=x(x-2)=(x-1)2-1;

(2)用表格表示:
x-2-1012o4
y8o0-10o8
(o)用图象表示,如图所示:


(4)①自变量x的取值范围是任意实数;
②图象的对称轴为直线x=1,顶点坐标为(1,-1);
③当x<1时,y随x的增大而减小;当x>1时,y随x的增大而增大;
④自变量取值范围是由解析式得到;对称轴与顶点坐标由表格得到;增减性是由图象得到.
故答案为:y=(x-1)2-1.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数的顶点C的横坐标为1,一次函数y=kx+2的图象与二次函数的图象交于A、B两点,且A点在y轴上,以C为圆心,CA为半径的⊙C与x轴相切,
(1)求二次函数的解析式;
(2)若B点的横坐标为3,过抛物线顶点且平行于x轴的直线为l,判断以AB为直径的圆与直线l的位置关系;
(3)在满足(2)的条件下,把二次函数的图象向右平移7个单位,向下平移t个单位(t>2)的图象与x轴交于E、F两点,当t为何值时,过B、E、F三点的圆的面积最小?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

己知:二次函数y=ax2+bx+6(a≠0)与x轴交于A、B两点(点A在点B的左侧),点A、点B的横坐标是一元二次方程x2-4x-12=0的两个根.
(1)请直接写出点A、点B的坐标.
(2)请求出该二次函数表达式及对称轴和顶点坐标.
(3)如图1,在二次函数对称轴上是否存在点P,使△APC的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.
(4)如图2,连接AC、BC,点Q是线段0B上一个动点(点Q不与点0、B重合).过点Q作QDAC交BC于点D,设Q点坐标(m,0),当△CDQ面积S最大时,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0)、B(0,1)两点,且对称轴是y轴.经过点C(0,2)的直线l与x轴平行,O为坐标原点,P、Q为抛物线y=ax2+bx+c(a≠0)上的两动点.
(1)求抛物线的解析式;
(2)以点P为圆心,PO为半径的圆记为⊙P,判断直线l与⊙P的位置关系,并证明你的结论;
(3)设线段PQ=9,G是PQ的中点,求点G到直线l距离的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,Rt△AOB的顶点坐标分别为A(0,2),O(0,0),B(4,0),△AOB绕O点按逆时针方向旋转90°得到△COD.
(1)求C、D两点的坐标;
(2)求经过C、D、B三点的抛物线的解析式;
(3)设(2)中的抛物线的顶点为P,AB的中点为M,试判断△PMB是钝角三角形、直角三角形还是锐角三角形,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=
1
2
x2+mx+n(n≠0)与直线y=x交于A、B两点,与y轴交于点C,OA=OB,BCx轴.
(1)求抛物线的解析式;
(2)设D、E是线段AB上异于A、B的两个动点(点E在点D的上方),DE=
2
,过D、E两点分别作y轴的平行线,交抛物线于F、G,若设D点的横坐标为x,四边形DEGF的面积为y,求x与y之间的关系式,写出自变量x的取值范围,并回答x为何值时,y有最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为10米.当x等于多少米时,窗户的透光面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

草莓是对蔷薇科草莓属植物的通称,属多年生草本植物,草莓的外观呈心形,鲜美红嫩,果肉多汁,含有特殊的浓郁水果芳香,草莓营养价值高,含丰富维生素C,有帮助消化的功效,与此同时,草莓还可以巩固齿龈,清新口气,润泽喉部.我市某草莓种植基地去年第x个月种植草莓的亩数y(亩),与x(1≤x≤12,且x为整数)之间的函数关系如表:
月份x123456789101112
13种植某数y6810121416161616161616
每亩收益z(元)与月份x(月)(1≤x≤12,且x为整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数,反比例函数或二次函数的有关知识,直接写出y与x之间的函数关系式,根据如图所示的变化趋势,直接写出z与x之间满足的函数关系式;
(2)该草莓种植基地在去年哪个月的总收益最大,求出这个最大收益;
(3)今年1月份,该草莓种植基地加大规模,种植草莓比去年12月份多4亩,每亩收益比去年12月份多a%,今年2月份,该草莓种植基地继续加大规模,种植草莓比今年1月份多2a%,每亩收益比今年1月份多6元,若今年2月份该草莓种植基地总收益为672元,请你参考以下数据,通过计算估算出a的整数值.(参考数据:
63
=7.94,
65
=8.06,
66
=8.12)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2xm.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.

查看答案和解析>>

同步练习册答案