精英家教网 > 初中数学 > 题目详情
9.求下列式子中的x
(x-1)3=125.

分析 根据立方根,即可解答.

解答 解:(x-1)3=125.
x-1=5
x=6.

点评 本题考查了立方根,解决本题的关键是熟记立方根的定义.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.已知:如图,在Rt△ABC中,∠ACB=90°,AC=15,BC=20,CD⊥AB,垂足为D,点E是点D关于AC的对称点,连接AE,CE.

(1)求CD和AD的长;
(2)若将△ACE沿着射线AB方向平移,设平移的距离为m(平移距离指点A沿AB方向所经过的线段长度),当点E平移到线段AC上时,求m的值;
(3)如下图,将△ACE绕点A顺时针旋转-个角α(0°<α<180°),记旋转中的△ACE为△AC′E′,在旋转过程中,设C′E′所在的直线与直线BC交于点P,与直线AB交于点Q,若存在这样的P,Q两点,使△BPQ为等腰三角形,直接写出此时AQ的长,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.请你参与下面探究过程,完成所提出的问题.
(1)探究1:如图1,P是△ABC的内角∠ABC与∠ACB的平分线BP和CP的交点,若∠A=70°,则∠BPC=125度;
(2)探究2:如图2,P是△ABC的外角∠DBC与外角∠ECB的平分线BP和CP的交点,求∠BPC与∠A的数量关系?并说明理由.
(3)拓展:如图3,P是四边形ABCD的外角∠EBC与∠BCF的平分线BP和CP的交点,设∠A+∠D=α.
①直接写出∠BPC与α的数量关系;
②根据α的值的情况,判断△BPC的形状(按角分类).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知x2m+ny与x7ym-2n是同类项,则n=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.观察:∵$\sqrt{4}$<$\sqrt{7}$<$\sqrt{9}$,即2<$\sqrt{7}$<3,∴$\sqrt{7}$的整数部分为2,小数部分为$\sqrt{7}$-2,请你观察上述式子规律后解决下面问题.
(1)规定用符号[m]表示实数m的整数部分,例如:[$\frac{4}{5}$]=0,[π]=3,
填空:[$\sqrt{10}$+2]=5;[5-$\sqrt{13}$]=1.
(2)如果5+$\sqrt{13}$的小数部分为a,5-$\sqrt{13}$的小数部分为b,求a+b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.已知一次函数y=2x+b,若x=-$\sqrt{3}$时,y=$\sqrt{3}$,则b=(  )
A.-$\sqrt{3}$B.$\sqrt{3}$C.2$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在平面直角坐标系xOy中,抛物线y=ax2-8ax交x轴的正半轴于点A,B为抛物线的顶点,对称轴交x轴于点C,且BC:OA=4:3.
(1)求抛物线解析式;
(2)点D在y轴的正半轴上,点E在线段AD上,射线OE交BC右侧的抛物线于点F,当CE=4,OF=AD时,求点D的坐标;
(3)在(2)的条件下,点P在第一象限BC右侧的抛物线上,OP交BC于点G,PH⊥x轴于点H,交AG于点M,交AD于点N,当∠PNA=2∠POA时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.我区“联华”超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y(千克)与销售单价x(元)(x≥30)存在如图所示的一次函数关系.
(1)试求出y与x的函数关系式;
(2)设超市销售该绿色食品每天获得利润p元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么AH的长是(  )
A.2.5B.$\sqrt{5}$C.$\frac{3}{2}$$\sqrt{2}$D.2

查看答案和解析>>

同步练习册答案