精英家教网 > 初中数学 > 题目详情
37、如图①所示,已知直线m∥n,A,B为直线n上的两点,C,D为直线m上的两点.
(1)写出图中面积相等的各对三角形
△ABC和△ABD,△AOC和△BOD,△CDA和△CDB

(2)如果A,B,C为三个定点,点D在m上移动,那么无论D点移动到任何位置,总有
△ABD
与△ABC的面积相等,理由是
平行线间的距离处处相等

解决以下问题:如图②所示,五边形ABCDE是张大爷十年前承包的一块土地的示意图,经过多年开垦荒地,现已变成如图③所示的形状,但承包土地与开垦荒地的分界小路(即图中的折线CDE)还保留着.张大爷想过E点修一条直路,使直路左边的土地面积与承包时的一样多,右边的土地面积与开垦荒地面积一样多.请你用相关的几何知识,按张大爷的要求设计出修路方案.(不计分界小路与直路的占地面积)
(3)写出设计方案,并在图③中画出相应的图形;
(4)说明方案设计的理由.
分析:(1)利用三角形的面积公式=底乘高除2,可知△ABC和△ABD,△AOC和△BOD,△CDA和△CDB面积相等.
(2)因为平行线间的距离处处相等,所以无论点D在m上移动到何位置,总有△ABD与△ABC同底等高,因此它们的面积相等.
(3)可利用三角形的面积公式和平行线的性质进行设计.这里就要添加辅助线.连接EC,过D作DF∥EC交CM于点F,连接EF然后证明即可.
解答:解:(1)△ABC和△ABD,△AOC和△BOD,△CDA和△CDB.

(2)根据平行线间的距离处处相等,所以无论点D在m上移动到何位置,总有△ABD与△ABC同底等高,因此它们的面积相等.

(3)如图所示,连接EC,过D作DF∥EC交CM于点F,连接EF,则EF即为所求直线.


(4)设EF交CD于点H,由(1),(2)知S△ECF=S△ECD,所以S△ECF-S△ECH=S△ECD-S△ECH
所以S△HCF=S△EDH
所以S五边形ABCDE=S四边形ABFE,S五边形EDCMN=S四边形EFMN
点评:此题主要考查了三角形的面积公式及平行线间的距离处处相等这一性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•黄石)如图1所示,已知直线y=kx+m与x轴、y轴分别交于点A、C两点,抛物线y=-x2+bx+c经过A、C两点,点B是抛物线与x轴的另一个交点,当x=-
1
2
时,y取最大值
25
4

(1)求抛物线和直线的解析式;
(2)设点P是直线AC上一点,且S△ABP:S△BPC=1:3,求点P的坐标;
(3)直线y=
1
2
x+a与(1)中所求的抛物线交于点M、N,两点,问:
①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由.
②猜想当∠MON>90°时,a的取值范围.(不写过程,直接写结论)
(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M、N两点之间的距离为|MN|=
(x2-x1)2+(y2-y1)2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1所示,已知直线,则的度数为
A.70B.80C.90D.100

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(湖北黄石卷)数学(带解析) 题型:解答题

如图1所示,已知直线与x轴、y轴分别交于A、C两点,抛物线经过A、C两点,点B是抛物线与x轴的另一个交点,当时,y取最大值.

(1)求抛物线和直线的解析式;
(2)设点P是直线AC上一点,且,求点P的坐标;
(3)若直线与(1)中所求的抛物线交于M、N两点,问:
①是否存在a的值,使得∠MON=900?若存在,求出a的值;若不存在,请说明理由;
②猜想当∠MON>900时,a的取值范围(不写过程,直接写结论).
(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M,N两点间的距离为

查看答案和解析>>

科目:初中数学 来源:2013年湖北省黄石市中考数学试卷(解析版) 题型:解答题

如图1所示,已知直线y=kx+m与x轴、y轴分别交于点A、C两点,抛物线y=-x2+bx+c经过A、C两点,点B是抛物线与x轴的另一个交点,当x=-时,y取最大值
(1)求抛物线和直线的解析式;
(2)设点P是直线AC上一点,且S△ABP:S△BPC=1:3,求点P的坐标;
(3)直线y=x+a与(1)中所求的抛物线交于点M、N,两点,问:
①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由.
②猜想当∠MON>90°时,a的取值范围.(不写过程,直接写结论)
(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M、N两点之间的距离为|MN|=

查看答案和解析>>

科目:初中数学 来源:2011年河北邯郸市毕业生升学模拟考试数学试卷(二) 题型:选择题

如图1所示,已知直线,则的度数为

A.70       B.80           C.90          D.100

 

查看答案和解析>>

同步练习册答案