精英家教网 > 初中数学 > 题目详情
1.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.
(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;
(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).

分析 (1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;
(2)根据勾股定理画出图形即可.

解答 解:(1)如图1所示;

(2)如图2、3所示;

点评 本题考查的是作图-应用与设计作图,熟知勾股定理是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.已知如图,直线AB与OC交于点B,与OD交于点A,射线OE和射线AF交于点G.
(1)若∠COD=90°,OE平分∠BOA,AF平分∠BAD,∠OBA=36°求∠OGA的度数.
(2)若∠COD<90°,
①∠GOA=$\frac{1}{3}$∠BOA,∠GAD=$\frac{1}{3}$∠BAD,∠OBA=36°,求∠OGA的度数.
②将①中“∠OBA=36°”改为“∠OBA=β”,其余条件不变,则∠OGA=$\frac{β}{3}$(用含β的代数式表示).
(3)若∠COD<90°,∠GOA=$\frac{1}{n}$∠BOA,∠GAD=$\frac{1}{n}$∠BAD,∠OBA=β°,则∠OGA=$\frac{β}{n}$.(含n、β的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为$\frac{5}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若坡角∠FAE=30°,求大树的高度(结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,$\sqrt{3}$≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则$\widehat{BE}$的长度为$\frac{2}{3}π$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知不等式:①x-3<0;②1>3-x;③$\frac{x+1}{2}$-x<$\frac{x-1}{2}$.从这3个不等式中任取2个构成不等式组,其中是否存在一个解集中只有一个整数解的不等式组?若存在,写出不等式组并求这个整数解;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,在平面直角坐标系中,点A(0,$\sqrt{3}$)、B(-1,0),过点A作AB的垂线交x轴于点A1,过点A1作AA1的垂线交y轴于点A2,过点A2作A1A2的垂线交x轴于点A3…按此规律继续作下去,直至得到点A2015为止,则点A2015坐标为(-31008,0),.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在四边形ABCD中,DC∥AB,DA⊥AB,AD=4cm,DC=5cm,AB=8cm.如果点P由B点出发沿BC方向向点C匀速运动,同时点Q由A点出发沿AB方向向点B匀速运动,它们的速度均为1cm/s,当P点到达C点时,两点同时停止运动,连接PQ,设运动时间为t s,解答下列问题:
(1)当t为何值时,P,Q两点同时停止运动?
(2)设△PQB的面积为S,当t为何值时,S取得最大值,并求出最大值;
(3)当△PQB为等腰三角形时,求t的值.

查看答案和解析>>

同步练习册答案