精英家教网 > 初中数学 > 题目详情
11.如图,矩形ABCD中,AB=6,BC=8,点E是射线CB上的一个动点,把△DCE沿DE折叠,点C的对应点为C′.
(1)若点C′刚好落在对角线BD上时,BC′=4;
(2)当B C′∥DE时,求CE的长;
(3)若点C′刚好落在线段AD的垂直平分线上时,求CE的长.

分析 (1)根据∠C=90°,BC=8,可得Rt△BCD中,BD=10,据此可得BC′=10-6=4.
(2)由折叠得,∠CED=∠C′ED,根据BC′∥DE,可得∠EC′B=∠C′ED,∠CED=∠C′BE,进而得到∠EC′B=∠C′EB,据此可得BE=C′E=EC=4;
(3)作AD的垂直平分线,交AD于点M,交BC于点N,分两种情况讨论:①当点C′在矩形内部时;②当点C′在矩形外部时,分别根据勾股定理,列出关于x的方程进行求解即可.

解答 解:(1)如图1,由折叠可得DC'=DC=6,
∵∠C=90°,BC=8,
∴Rt△BCD中,BD=10,
∴BC′=10-6=4.
故答案为4;

(2)如图2,由折叠得,∠CED=∠C′ED,
∵BC′∥DE,
∴∠EC′B=∠C′ED,∠CED=∠C′BE,
∴∠EC′B=∠C′EB,
∴BE=C′E=EC=4;

(3)作AD的垂直平分线,交AD于点M,交BC于点N,分两种情况讨论:
①当点C′在矩形内部时,如图3,
∵点C′在AD的垂直平分线上,
∴DM=4,
∵DC′=6,
∴由勾股定理得:MC′=2$\sqrt{5}$,
∴NC′=6-2$\sqrt{5}$,
设EC=x,则C′E=x,NE=4-x,
∵NC′2+NE2=C′E2
∴(6-2$\sqrt{5}$)2+(4-x)2=x2
解得:x=9-3$\sqrt{5}$,
即CE=9-3$\sqrt{5}$;

②当点C′在矩形外部时,如图4,
∵点C′在AD的垂直平分线上,
∴DM=4,
∵DC′=6,
∴由勾股定理得:MC′=2$\sqrt{5}$,
∴NC′=6+2$\sqrt{5}$,
设EC=y,则C′E=y,NE=y-4,
∵NC′2+NE2=C′E2
∴(6+2$\sqrt{5}$)2+(y-4)2=y2
解得:y=9+3$\sqrt{5}$,
即CE=9+3$\sqrt{5}$,
综上所述,CE的长为9±3$\sqrt{5}$.

点评 本题属于四边形综合题,主要考查了折叠的性质,矩形的性质,垂直平分线的性质以及勾股定理的综合应用.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解题时,常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.计算:
(1)$\sqrt{8}$+|1-$\sqrt{2}$|-π0+${(\frac{1}{2})}^{-1}$  
(2)($\sqrt{8}$+$\sqrt{3}$)×$\sqrt{6}$-(4$\sqrt{2}$-3$\sqrt{6}$)÷2$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,已知正比例函数的图象与反比例函数y=$\frac{8}{x}$的图象交于点A(m,4).
(1)求正比例函数的解析式;
(2)将正比例函数的图象向下平移6个单位得到直线l,设直线l与x轴的交点为B,求∠ABO的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.在平面直角坐标系中,点P(3,-2)关于y轴的对称点是(-3,-2),关于原点的对称点是(-3,2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.下面的表格是李刚同学一学期数学成绩的记录,根据表格提供的信息回答下面的问题 
考试类别                  平时期中考试期末考试
第一单元第二单元第三单元第四单元
成绩888690929096
(1)李刚同学6次成绩众数是90.
(2)李刚同学6次成绩的中位数是90.
(3)李刚同学平时成绩的平均数是89.
(4)如果用下图的权重给李刚打分,他应该得多少分?(满分100分,写出解题过程)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如果有理数a、b在数轴上对应的点在原点的两侧,并且到原点的距离相等,那么2|a+b|=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知a,b都是实数,且(12a+b)2+|3a-b-5|=0,求13a2-b的平方根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,函数y=kx与y=$\frac{m}{x}$的图象在第一象限内交于点A,过点A作AD垂直x轴于点D,且S△AOD=$\frac{3}{2}$.
(1)求反比例函数的关系式;
(2)若AD=1,试求k的值;
(3)若kx-$\frac{m}{x}$>0,请直接写出x的取值范围-3<x<0或x>3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,A、B两点在反比例函数y=$\frac{k}{x}$(x>0)的图象上,其中k>0,AC⊥y轴于点C,BD⊥x轴于点D,且AC=1
(1)若k=2,则AO的长为$\sqrt{5}$,△BOD的面积为1;
(2)若点B的横坐标为k,且k>1,当AO=AB时,求k的值.

查看答案和解析>>

同步练习册答案