精英家教网 > 初中数学 > 题目详情

已知:如图,AB是⊙O的直径,D是弧AC的中点,弦AC与BD相交于点E,AD=数学公式,DE=2.
(1)求直径AB的长;
(2)在图2中,连接DO,DC,BC.求证:四边形BCDO是菱形;
(3)求图2中阴影部分的面积.

解:(1)∵D是弧AC的中点,
∴∠DAC=∠B,
∵∠ADE=∠BDA,
∴△ADE∽△BDA,
=
∴BD===6,
∵AB是⊙O的直径,
∴∠ADB=90°.
在Rt△ABD中,由勾股定理,得AB===4

(2)∵在Rt△ABD中,AB=4,AD=2
∴AB=2AD,
∴∠ABD=30°,∠DAB=60°,
∴∠ABD=∠DAC=∠CAB=30°,
∴CD=BC,
∵在Rt△ABC中,∠CAB=30°,
∴AB=2BC,
∴OB=OD=BC=CD,
∴四边形BCDO是菱形.

(3)连接OC,
∵OD=OB,∠DBA=30°,
∴∠ODB=∠OBD=30°,
∴∠DOB=120°,
∵四边形BCDO是菱形,
∴BD⊥OC,
∴菱形BCDO的面积是S=BD×OC=×6×2=6
∵扇形BCD的面积是S′==4π,
∴S阴影=S′-S=4π-6
分析:(1)证△ADE∽△BDA,推出=,求出BD,根据勾股定理求出AB即可;
(2)求出AB=2AD,求出AB=2BC,推出OB=OD=BC=CD,根据菱形的判定推出即可;
(3)求出∠DOB,求出菱形BCDO和扇形DOB的面积,即可求出答案.
点评:本题综合考查了相似三角形的性质和判定,扇形的面积,菱形的性质和判定,含30度角的直角三角形的性质,圆心角、弧、弦之间的关系,勾股定理,圆周角定理等知识点的应用,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知:如图,AB是⊙O的直径,BC是和⊙O相切于点B的切线,⊙O的弦AD平行于OC.
求证:DC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区一模)已知:如图,AB是⊙O的直径,AC是⊙O的弦,M为AB上一点,过点M作DM⊥AB,交弦AC于点E,交⊙O于点F,且DC=DE.
(1)求证:DC是⊙O的切线;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•昆明)已知:如图,AB是⊙O的直径,直线MN切⊙O于点C,AD⊥MN于D,AD交⊙O于E,AB的延长线交MN于点P.求证:AC2=AE•AP.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•平谷区二模)已知,如图,AB是⊙O的直径,点E是
AD
的中点,连接BE交AC于点G,BG的垂直平分线CF交BG于H交AB于F点.
(1)求证:BC是⊙O的切线;
(2)若AB=8,BC=6,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB是⊙O的直径,BC为⊙O的切线,过点B的弦BD⊥OC交⊙O于点D,垂足为E.
(1)求证:CD是⊙O的切线;
(2)当BC=BD,且BD=12cm时,求图中阴影部分的面积(结果不取近似值).

查看答案和解析>>

同步练习册答案