解:∵AD⊥BC,
∴∠ADB=∠ADC=90°,
在Rt△ADB中,∠B+∠BAD=90°,
又∵∠B=45°,
∴∠B=∠BAD=45°,
∴AD=BD=6,
在Rt△ADC中,∠C=30°,
∴AC=2AD=12,
∴CD=
=
=6
,BC=BD+DC=6+6
,
∴S
△ABC=
BC•AD=
×(6+6
)×6=18+18
.
分析:由AD垂直于BC,得到三角形ABD与三角形ADC都为直角三角形,再由∠B=45°,得到三角形ABD为等腰直角三角形,即AD=BD,利用30°所对的直角边等于斜边的一半,求出AC的长,利用勾股定理求出DC的长,再由BD+DC求出BC的长,利用三角形的面积公式求出三角形ABC面积即可.
点评:此题考查了勾股定理,含30度直角三角形的性质,以及等腰三角形的判定与性质,熟练掌握勾股定理是解本题的关键.