(1)证明:连接OA,OG,
∵A为

的中点,EG切⊙O于G,
∴OA⊥CD,OG⊥FG,
∴∠A+∠AKC=90°,∠AGO+∠EGK=90°,
∵OA=OC,∠AKC=∠EKG,
∴∠A=∠AGO,∠A+∠EKG=90°,
∴∠EKG=∠EGK,
∴KE=GE;

(2)解:连接OA,OG,OC,设OA与CD交于点F,
∵AC∥EG,
∴∠CAK=∠EGK,
∵∠AKC=∠EKG,∠EKG=∠EGK,
∴∠CAK=∠CKA,
∴AC=KC,
∵

,
设DK=3x,CK=5x,则AC=5x,CD=DK+CK=8x,
∴CF=DF=4x,FK=DF-DK=x,
在Rt△ACF中,AF=

=3x,
在Rt△AKF中,AF
2+FK
2=AK
2,
∴(3x)
2+x
2=(2

)
2,
解得:x=2,
∴AF=3x=6,CF=4x=8,
设⊙O的半径为y,
则OF=y-6,
在Rt△OCF中,OC
2=OF
2+CF
2,
∴y
2=64+(y-6)
2,
解得:y=

,
∴⊙O的半径为:

.
分析:(1)首先连接OA,OG,由A为

的中点,EG切⊙O于G,可得OA⊥CD,OG⊥FG,即可证得∠EKG=∠EGK,继而可得KE=GE;
(2)首先连接OA,OG,OC,设OA与CD交于点F,易得AC=KC,设DK=3x,CK=5x,则AC=5x,CD=DK+CK=8x,可得CF=DF=4x,FK=DF-DK=x,即可得AF=3x,然后由在Rt△AKF中,AF
2+FK
2=AK
2,得到方程(3x)
2+x
2=(2

)
2,即可求得x的值,再设⊙O的半径为y,由在Rt△OCF中,OC
2=OF
2+CF
2,可得方程y
2=64+(y-6)
2,继而求得答案.
点评:此题考查了切线的性质、垂径定理、等腰三角形的判定与性质以及勾股定理等知识.此题难度较大,注意掌握辅助线的作法,注意掌握方程思想与数形结合思想的应用.