精英家教网 > 初中数学 > 题目详情
如图,已知四边形ABCD中,E、F、G、H分别为AB、BC、CD、DA的中点,
①求证:四边形EFGH是平行四边形.
②探索下列问题,并选择一个进行证明.
a.原四边形ABCD的对角线AC、BD满足
AC⊥BD
AC⊥BD
时,四边形EFGH是矩形.
b.原四边形ABCD的对角线AC、BD满足
AC=BD
AC=BD
时,四边形EFGH是菱形.
c.原四边形ABCD的对角线AC、BD满足
AC⊥BD且AC=BD
AC⊥BD且AC=BD
时,四边形EFGH是正方形.
分析:①首先连接AC,BD,由三角形中位线的性质,可判定EH∥FG,GH∥EF,继而可证得四边形EFGH是平行四边形.
②a、由①可得当原四边形ABCD的对角线AC、BD满足AC⊥BD时,四边形EFGH是矩形.
b、由①可得原四边形ABCD的对角线AC、BD满足AC=BD时,四边形EFGH是菱形.
c、由a与b可得:原四边形ABCD的对角线AC、BD满足AC⊥BD且AC=BD时,四边形EFGH是正方形.
解答:解:①连接AC,BD,
∵四边形ABCD中,E、F、G、H分别为AB、BC、CD、DA的中点,
∴EH∥BD,FG∥BD,
∴EH∥FG,
同理:GH∥EF,
∴四边形EFGH是平行四边形.

②a、当AC⊥BD时,四边形EFGH是矩形.
∵由①得:四边形MONH是平行四边形,
∴当AC⊥BD时,四边形MONH是矩形,
∴∠EHG=90°,
∴四边形EFGH是矩形.

b、当AC=BD时,四边形EFGH是菱形.
∵HG=
1
2
AC,EH=
1
2
BD,
∴EH=GH,
∴四边形EFGH是菱形;

c、由a与b可得:原四边形ABCD的对角线AC、BD满足AC⊥BD且AC=BD时,四边形EFGH是正方形.
故答案为:a、AC⊥BD,b、AC=BD,c、AC⊥BD且AC=BD.
点评:此题考查了中点四边形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,已知四边形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求证:PA=PD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形ABCD内接于⊙O,A是
BDC
的中点,AE⊥AC于A,与⊙O及CB精英家教网的延长线分别交于点F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求证:△ADC∽△EBA;
(2)求证:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•梧州)如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.
求证:四边形BECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源:2010年湖南常德市初中毕业学业考试数学试卷 题型:047

如图,已知四边形AB∥CD是菱形,DEAB,DFBC.求证△ADE≌△CDF

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形AB∥CD是菱形,DE∥AB,DFBC.求证

 


查看答案和解析>>

同步练习册答案