精英家教网 > 初中数学 > 题目详情
电力公司给四个村庄改造电网,这四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图,图中的实线部分,请你帮助计算一下,哪种架设方案最省电线?(以下数据可供参考:
2
=1.414
3
=1.732
5
=2.236

设正方形边长为a.
在方案(1)中,用电线为DA+AB+BC=3a.
在方案(2)中,用电线为AB+BC+CD=3a.
在方案(3)中,用电线为AC+BD=2
2
a≈2.828a.
在方案(4)中,通过已知条件可知:AG=
a
2
,AE=2EG,
在Rt△AGE中,设EG=x,则AE=2x,
由勾股定理得:(2x)2=x2+(
a
2
2,解得:x=
3
6
a,
∴EG=
3
6
a
,AE=
3
3
a

用电线为AE+DE+BF+CF+EF=4AE+(GH-2EG)=(
3
+1)a≈2.732a

答:方案(4)最省电线.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,E是正方形ABCD的边AD上的动点,F是边BC延长线上的一点,且BF=EF,AB=12,设AE=x,BF=y.
(1)当△BEF是等边三角形时,求BF的长;
(2)求y与x的函数解析式,并写出它的定义域;
(3)把△ABE沿着直线BE翻折,点A落在点A′处,试探索:△A′BF能否为等腰三角形?如果能,请求出AE的长;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在正方形ABCD中,O是对角线AC、BD的交点,过O作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的长为(  )
A.7B.5C.4D.3

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正方形ABCD的边长为3,以CD为一边向CD两侧作等边三角形PCD和等边三角形QCD,那么PQ的长是(  )
A.
3
3
2
B.
2
3
3
C.3
3
D.6
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

将正方形ABCD(如图1)分割成四块,再拼成的矩形BDFH(如图2).

(1)这两个图形的面积显然不等,请你计算矩形BDFH与正方形ABCD的面积的差;
(2)为什么这两个图形的面积不等呢?通过观察发现,所拼成的矩形BDFH中,沿对角线方向有一条细小的缝隙.请你用学过的数学知识解释这条缝隙产生的原因.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC是一块锐角三角形余料,边BC=12cm,高AD=6cm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,则正方形的边长为______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图正方形ABCD中,点E、F分别在BC、CD上,且∠EAF=45°.
(1)求证:BE+DF=EF;
(2)若BE=3,DF=2,求AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:∠MON=90°,在∠MON的内部有一个正方形AOCD,点A、C分别在射线OM、ON上,点B1是ON上的任意一点,在∠MON的内部作正方形AB1C1D1
(1)连续D1D,求证:∠D1DA=90°;
(2)连接CC1,猜一猜,∠C1CN的度数是多少?并证明你的结论;
(3)在ON上再任取一点B2,以AB2为边,在∠MON的内部作正方形AB2C2D2,观察图形,并结合(1)、(2)的结论,请你再做出一个合理的判断.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AC是正方形ABCD的对角线,点O是AC的中点,点Q是AB上一点,连接CQ,DP⊥CQ于点E,交BC于点P,连接OP,OQ;
求证:
(1)△BCQ≌△CDP;
(2)OP=OQ.

查看答案和解析>>

同步练习册答案