【题目】某地区的一次人口抽样统计分析中,各年龄段(年龄取整数)的人数如下表:
年龄段 | 0~9 | 10~19 | 20~29 | 30~39 | 40~49 | 50~59 | 60~69 | 70~79 | 80~89 |
人数 | 9 | 11 | 17 | 18 | 17 | 12 | 8 | 6 | 2 |
请根据此表回答下列问题:
(1)这次抽查的样本个体的数目是_____;
(2)样本中年龄在60岁以上(含60岁)的频率是_____;
(3)样本中年龄的中位数落在表中给出的哪个年龄段内?
(4)如果该地区现有人口80000人,为了关注人口老龄化问题,请估算该地区60岁以上(含60岁)的人口数.
【答案】(1)100;(2)0.16;(3)30~39;(4)12800.
【解析】
(1)依据频数表中的数据想加,即可得到调查的人数;
(2)依据频数表中的数据,即可得到年龄在60岁以上(含60岁)的频数,除以被调查的人数总数即可;
(3)根据中位数的定义即可得出;
(4)依据60岁以上(含60岁)的人口所占的百分比,即可估算该地区60岁以上(含60岁)的人口数.
解:(1)9+11+17+18+17+12+8+6+2=100(人)
故答案为:100;
(2)年龄在60岁以上(含60岁)的人数16人,;
故答案为:0.16;
(3)因为第50和51个数都在30~39,而且中位数是第50和51个数的平均数所以中位数在30~39,
故答案为:30~39;
(4)该地区60岁以上(含60岁)的人口数约为80000×16%=12800(人),
故答案为:12800.
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).
(1)求反比例函数与一次函数的表达式;
(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,半圆D的直径AB=4,线段OA=7,O为原点,点B在数轴的正半轴上运动,点B在数轴上所表示的数为m.
(1)当半圆D与数轴相切时,m= .
(2)半圆D与数轴有两个公共点,设另一个公共点是C.
①直接写出m的取值范围是 .
②当BC=2时,求△AOB与半圆D的公共部分的面积.
(3)当△AOB的内心、外心与某一个顶点在同一条直线上时,求tan∠AOB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一次函数的图象与反比例函数 的图象交于两点,与轴交于点,点的坐标为,点的坐标为,且.
(1)求该反比例函数和一次函数的解析式;
(2)求点的坐标;
(3)在轴上是否存在点,使有最大值,如果存在,请求出点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次一共调查了多少名购买者?
(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为 度.
(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解学生平均每天课外阅读的时间,随机调查了该校部分学生一周内平均每天课外阅读的时间(以分钟为单位,并取整数),将有关数据统计整理并绘制成尚未完成的频率分布表和频数分布直方图.请你根据图表中所提供的信息,解答下列问题.
频率分布表
组别 | 分组 | 频数 | 频率 |
1 | 15~25 | 7 | 0.14 |
2 | 25~35 | a | 0.24 |
3 | 35~45 | 20 | 0.40 |
4 | 45~55 | 6 | b |
5 | 55~65 | 5 | 0.10 |
注:这里的15~25表示大于等于15同时小于25.
(1)求被调查的学生人数;
(2)直接写出频率分布表中的a和b的值,并补全频数分布直方图;
(3)若该校共有学生500名,则平均每天课外阅读的时间不少于35分钟的学生大约有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.
(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在Rt△ABC中,∠ACB=90°,AC=1,D是AB的中点,以CD为直径的⊙Q分别交BC、BA于点F、E,点E位于点D下方,连接EF交CD于点G.
(1)如图1,如果BC=2,求DE的长;
(2)如图2,设BC=x,=y,求y关于x的函数关系式及其定义域;
(3)如图3,连接CE,如果CG=CE,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,点D,E是位于AB两侧的半圆AB上的动点,射线DC切⊙O于点D.连接DE,AE,DE与AB交于点P,F是射线DC上一动点,连接FP,FB,且∠AED=45°.
(1)求证:CD∥AB;
(2)填空:
①若DF=AP,当∠DAE=_________时,四边形ADFP是菱形;
②若BF⊥DF,当∠DAE=_________时,四边形BFDP是正方形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com