精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,∠BAC=30°且ABACP是底边上的高AH上一点.若AP+BP+CP的最小值为2,则BC_____

【答案】

【解析】

如图将ABP绕点A顺时针旋转60°得到AMG.连接PG,CM.首先证明当M,G,P,C共线时,PA+PB+PC的值最小,最小值为线段CM的长,想办法求出AC的长即可解决问题.

如图将ABP绕点A顺时针旋转60°得到AMG.连接PG,CM.

AB=AC,AHBC,

∴∠BAP=CAP,

PA=PA,

∴△BAP≌△CAP(SAS),

PC=PB,

MG=PB,AG=AP,GAP=60°,

∴△GAP是等边三角形,

PA=PG,

PA+PB+PC=CP+PG+GM,

∴当M,G,P,C共线时,PA+PB+PC的值最小,最小值为线段CM的长,

AP+BP+CP的最小值为2

CM=2

∵∠BAM=60°,BAC=30°,

∴∠MAC=90°,

AM=AC=2,

BNACN.则BN=AB=1,AN=,CN=2-

BC=

故答案为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】P为拋物线为常数,)上任意一点,将抛物线绕顶点G逆时针旋转90°后得到的图象与轴交于AB两点(点A在点B的上方),点Q为点P旋转后的对应点.

1)抛物线的对称轴是直线________,当m=2时,点P的横坐标为4时,点Q的坐标为_________

2)设点Q请你用含m的代数式表示________

3)如图,点Q在第一象限,点D轴的正半轴上,点COD的中点,QO平分∠AQC,当AQ=2QCQD=时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使BED=C.

(1)判断直线AC与圆O的位置关系,并证明你的结论;

(2)若AC=8,cosBED=,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=x2+mxx轴的负半轴于点A.点By轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某数学兴趣小组的同学在一次活动中,为了测量某建筑物AB的高,他们来到另一建筑物CD上的点C处进行观察,如图所示,他们测得建筑物AB顶部A的仰角为30°,底部B的俯角为45°,已知建筑物AB、CD的距离DB为12m,求建筑物AB的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+cyx的部分对应值如下表:

x

-1

0

1

3

y

-3

1

3

1

下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值yx的增大而增大;④方程ax2+bx+c=0有一个根大于4,其中正确的结论有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A、B在直线l上,AB=10cm,⊙B的半径为1cm,点C在直线l上,过点C作直线CD∠DCB=30°,直线CDA点出发以每秒4cm的速度自左向右平行运动,与此同时,⊙B的半径也不断增大,其半径r(cm)与时间t(秒)之间的关系式为r=1+t(t≥0),当直线CD出发________秒直线CD恰好与⊙B相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把n个边长为1的正方形拼接成一排,求得tanBA1C=1,tanBA2C=,tanBA3C=,计算tanBA4C=_____,…按此规律,写出tanBAnC=_____(用含n的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程(a+2)x2﹣2ax+a=0有两个不相等的实数根x1和x2, 抛物线y=x2﹣(2a+1)x+2a﹣5与x轴的两个交点分别为位于点(2,0)的两旁,若|x1|+|x2|=2,则a的值为________

查看答案和解析>>

同步练习册答案