如图(13),E是直线AB、CD内部一点,AB∥CD,连接EA、ED (1)探究猜想: ①若∠A=30°,∠D=40°,则∠AED等于多少度? ②若∠A=20°,∠D=60°,则∠AED等于多少度? ③猜想图(13)中∠AED、∠EAB、∠EDC的关系并证明你的结论. (2)拓展应用: 如图(14),射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③④位于直线AB上方),P是位于以上四个区域上点,猜想:∠PEB、∠PFC、∠EPF的关系(不要求证明). | |
.解:(1)四边形ABCD是矩形,D是BC中点,
∴
设反比例函数解析式为
∵ ∴
当时,
∴
(2)设
∵∠OAF=∠DFC △AOF∽△FDC
∴ 即
∴
解得:
∴或
解:(1)①∠AED=70° ②∠AED=80° ③∠AED=∠EAB+∠EDC
证明:延长AE交DC于点F∵AB∥DC∴∠EAB=∠EFD又∵∠AED是△EFD的外角∴∠AED=∠EDF+∠EFD =∠EAB+∠EDC(2)P点在区域①时:∠EPF=3600 -(∠PEB+∠PFC)P点在区域②时:∠EPF=∠PEB+∠PFCP点在区域③时:∠EPF=∠PEB-∠PFCP点在区域④时:∠EPF=∠PFC-∠PFB评分阈值:1分
科目:初中数学 来源: 题型:
有六张完全相同的卡片,分A、B两组,每组三张,在A组的卡片上分别画上√×√,B组的卡片上分别画上√××,如图1所示。
(1)若将卡片无标记的一面朝上摆在桌上,再发布从两组卡片中随机各抽取一张,求两张卡片上标记都是√的概率(请用树形图法或列表法求解)
(2)若把A、B两组卡片无标记的一面对应粘贴在一起得到3张卡片,其正反面标记如图2所示,将卡片正面朝上摆放在桌上,并用瓶盖盖住标记。
①若随机揭开其中一个盖子,看到的标记是√的概率是多少
②若揭开盖子,看到的卡片正面标记是√后,猜想它的反面也是√,求猜对的概率。
查看答案和解析>>
科目:初中数学 来源: 题型:
下列四个汽车图标中,既是中心对称图形又是轴对称图形的图标有几个?
查看答案和解析>> 科目:初中数学 来源: 题型: 如图2是装有三个小轮的手拉车在“爬”楼梯时的侧面示意图,定长的轮架杆OA,OB,OC抽象为线段,有OA=OB=OC,且∠AOB=120°,折线NG-GH-HE-EF表示楼梯,GH,EF是水平线,NG,HE是铅直线,半径相等的小轮子⊙A,⊙B与楼梯两边都相切,且AO∥GH。 (1)如图2①,若点H在线段OB上,则的值是 (2)如果一级楼梯的高度,点H到线段OB的距离满足条件 ≤3cm,那么小轮子半径的取值范围是 查看答案和解析>> 同步练习册答案 湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区 违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。 ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号 |