【题目】如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,以AC为直角边作等腰Rt△ACD,BD分别交y轴和⊙P于E、F两点,连接AC、FC.
(1)求证:∠ACF=∠ADB;
(2)若点A到BD的距离为m,BF+CF=n,求线段CD的长;
(3)当⊙P的大小发生变化而其他条件不变时,的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.
【答案】见解析
【解析】
(1)连接AB,根据线段垂直平分线性质求出AB=AC=AD,推出∠ADB=∠ABD,根据∠ABD=∠ACM求出即可;
(2)过点A作AH⊥BD于点H,求得∠FCD=∠FDC,根据勾股定理和等腰直角三角形的性质求出CD的平方,即可求出答案;
(3)过点D作DH⊥AO于N,过点D作DQ⊥BC于Q根据AAS证△DAM ≌△ACO和△DAF ≌△CAF,推出DH=AO,AH=OC,推出DQ=BQ,得出∠DBQ=45°,推出∠HDE=45°,得出等腰直角三角形DHE即可.
解:(1)证明:∵ PO⊥BC
∴ BO=CO
∴ AO垂直平分BC
∴ AB=AC
又∵ △ACD是以AC为直角边作等腰直角三角形
∴ AC= AD
∴ AB= AD
∴ ∠ABD=∠ADB
∵ ∠ABD=∠ACF
∴ ∠ACF =∠ADB
解:(2)过点A作AH⊥BD于点H
∴ AH=1
∵ △ACD是以AC为直角边作等腰直角三角形
∴ ∠ACD=∠ADC
∵ ∠ACF =∠ADB
∴∠ACD-∠ACF =∠ADC-∠ADB
即:∠FCD=∠FDC
∴ CF =DF
∵ BF+CF=14
∴ BD= BF+ DF = BF+CF =14
又∵ AB= AD
∴ BH= DH=BD=7
∴在Rt△ADH中:AD=
∴ AC= AD
∴ CD=
解:(3)的值不发生变化,过点过点D作DM⊥y轴于点M
∴ ∠DMA=∠AOC=90°
∴ ∠OAC+∠ACO=90°
∵ △ACD是以AC为直角边作等腰直角三角形
∴ ,∴ ∠DAC=90°,AC= AD
∴ ∠DAM +∠OAC = 90°
∴∠DAM=∠ACO
∴ △DAM ≌△ACO
∴ DM=AO
在△DAF与△CAF中,
AD=AC,AF=AF,DF=CF,
∴ △DAF ≌△CAF
∴ ∠DAF=∠CAF = 45°
∴ ∠CBF=∠CAF = 45°
∴ ∠BEO = 45°
∴ ∠DEM=∠BEO = 45°
∴ △DEM是等腰直角三角形
∴
∴
“点睛”本题考查了等腰直角三角形,全等三角形的性质和判,及勾股定理,线段垂直平分线性质,解(1)小题的关键是求出AB=AC=AD,解(2)小题的关键是求出BH的长,解(3)小题的关键是证出△DEM是等腰直角三角形.
科目:初中数学 来源: 题型:
【题目】如图①, 已知△ABC中, ∠BAC=90°, AB=AC, AE是过A的一条直线, 且B、C在AE的异侧, BD⊥AE于D, CE⊥AE于E.
(1)求证: BD=DE+CE.
(2)若直线AE绕A点旋转到图②位置时(BD<CE), 其余条件不变, 问BD与DE、CE的数量关系如何? 请给予证明;
(3)若直线AE绕A点旋转到图③位置时(BD>CE), 其余条件不变, 问BD与DE、CE的数量关系如何? 请直接写出结果, 不需证明.
(4)根据以上的讨论,请用简洁的语言表达BD与DE,CE的数量关系。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.
如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=-x+b与y轴相交于点B(0,3),与x轴交于点A,将△AOB沿y轴折叠,使点A落在x轴上的点C.
(1)求点C的坐标;
(2)设点P为线段CA上的一个动点,点P与点A、C不重合.联结PB.以点P为端点作射线PM交AB于点M,使∠BPM=∠BAC.
①求证:△PBC∽△MPA.
②是否存在点P,使△PBM为直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元;(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某新建公园有一个圆形人工湖,湖中心O处有一座喷泉,小明为测量湖的半径,在湖边选择A、B两个点,在A处测得∠OAB=45°,在AB延长线上的C处测得∠OCA=30°,已知BC=50米,求人工湖的半径.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD,AD∥BC,∠B=90,AD=6,AB=4,BC=9.
(1)求CD的长为.
(2)点P从点B出发,以每秒1个单位的速度沿着边BC向点C运动,连接DP.设点P运动的时间为t秒,则当t为何值时,△PDC为等腰三角形?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com