精英家教网 > 初中数学 > 题目详情

【题目】如图,过矩形ABCD的对角线AC的中点OEFAC,交BC边于点E,交AD边于点F,分别连接AECF,若AB2,∠DCF30°,则EF的长为(  )

A. 4B. 6C. D. 2

【答案】A

【解析】

求出∠ACB∠DAC,然后利用角角边证明△AOF△COE全等,根据全等三角形对应边相等可得OEOF,再根据对角线互相垂直平分的四边形是菱形得到四边形AECF是菱形,再求出∠ECF60°,然后判断出△CEF是等边三角形,根据等边三角形的三条边都相等可得EFCF,根据矩形的对边相等可得CDAB,然后求出CF,从而得解.

矩形对边AD∥BC

∴∠ACB∠DAC

∵OAC的中点,

∴AOCO

△AOF△COE中,

∴△AOF≌△COE(ASA)

∴OEOF

∵EF⊥AC

四边形AECF是菱形,

∵∠DCF30°

∴∠ECF90°30°60°

∴△CEF是等边三角形,

∴EFCF

∵AB2

∴CDAB2

∵∠DCF30°

∴CF=2÷4

∴EF4

故选A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C90°AC8BC6DAB边上的动点,过点DDEAB交边AC于点E,过点EEFDEBC于点F,连接DF

1)当AD4时,求EF的长度;

2)求DEF的面积的最大值;

3)设ODF的中点,随着点D的运动,则点O的运动路径的长度为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根

(1)求k的取值范围;

(2)若k为大于3的整数,且该方程的根都是整数,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果三角形的两个内角αβ满足2α+β=90°,那么我们称这样的三角形为准互余三角形”.

(1)若ABC准互余三角形”,C>90°,A=60°,则∠B=   °;

(2)如图①,在RtABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明ABD准互余三角形.试问在边BC上是否存在点E(异于点D),使得ABE也是准互余三角形?若存在,请求出BE的长;若不存在,请说明理由.

(3)如图②,在四边形ABCD中,AB=7,CD=12,BDCD,ABD=2BCD,且ABC准互余三角形,求对角线AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC内接于⊙O,过点A作直线EF.

(1)如图①,AB是直径,要使EF是⊙O的切线,还须添加一个条件是(只需写出三种情况).

(ī)   (īī)   (īīī)   

(2)如图(2),若AB为非直径的弦,∠CAE=∠B,则EF是⊙O的切线吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0 mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,其中第3天时硫化物的浓度降为4 mg/L.从第3天起所排污水中硫化物的浓度y与时间x满足下面表格中的关系:

时间x(天)

3

4

5

6

8

……

硫化物的浓y(mg/L)

4

3

2.4

2

1.5

(1)求整改过程中当0≤x<3时,硫化物的浓度y与时间x的函数表达式;

(2)求整改过程中当x≥3时,硫化物的浓度y与时间x的函数表达式;

(3)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0 mg/L?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,CD是⊙O的一条弦,且CDAB于点E,连接ADBCCO

1)当∠BCO25°时,求∠A的度数;

2)若CD4BE4,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情填,

在综合与实践课上,老师让同学们以矩形纸片的剪拼为主题开展数学活动,如图1,将矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD、并且量得AB2cmAC4cm.

操作发现:

(1)将图1中的△ACD以点A为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到加图2所示的△AC′D,过点CAC′的平行线,与DC′的延长线交于点E,则四边形ACEC'的形状是_________

(2)创新小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使BAD三点在同一条直线上,得到如图3所示的△AC′D,连接CC′,取CC'的中点F,连精AF并延长到点G,使FGAF,连接CGC′G,得到四边形ACGC′,发现它是正方形,请你证明这个结论.

实践探究:

(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC沿着BD方向平移,使点B与点A重合,此时A点平移至A′点,A′CBC′相交于点H.如图4所示,连接CC',试求CH的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在歌唱比赛中,一位歌手分别转动如下的两个转盘(每个转盘都被分成3等份)一次,根据指针指向的歌曲名演唱两首曲目.

(1)转动转盘时,该转盘指针指向歌曲“3”的概率是

(2)若允许该歌手替换他最不擅长的歌曲“3”,即指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”, 请用树形图或列表法中的一种,求他演唱歌曲“1”和“4”的概率.

查看答案和解析>>

同步练习册答案