精英家教网 > 初中数学 > 题目详情
已知:如图,以等边三角形ABC一边AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF⊥BC,垂足为F.
(1)求证:DF为⊙O的切线;
(2)若等边三角形ABC的边长为4,求DF的长;
(3)求图中阴影部分的面积.
证明:(1)连接DO.
∵△ABC是等边三角形,
∴∠A=∠C=60°.
∵OA=OD,
∴△OAD是等边三角形.
∴∠ADO=60°,
∵DF⊥BC,
∴∠CDF=90°﹣∠C=30°,
∴∠FDO=180°﹣∠ADO﹣∠CDF=90°,
∴DF为⊙O的切线;
(2)∵△OAD是等边三角形,
∴AD=AO=AB=2.
∴CD=AC﹣AD=2.
Rt△CDF中,
∵∠CDF=30°,
∴CF=CD=1.
∴DF=
(3)连接OE,由(2)同理可知CE=2.

∴CF=1,
∴EF=1.
∴S直角梯形FDOE=(EF+OD)•DF=
∴S扇形OED==
∴S阴影=S直角梯形FDOE﹣S扇形OED=
(1)连接DO,要证明DF为⊙O的切线只要证明∠FDP=90°即可;
(2)由已知可得到CD,CF的长,从而利用勾股定理可求得DF的长;
(3)连接OE,求得CF,EF的长,从而利用S直角梯形FDOE-S扇形OED求得阴影部分的面积.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.
(1)求证:直线CP是⊙O的切线.
(2)若BC=2,sin∠BCP=,求点B到AC的距离.
(3)在第(2)的条件下,求△ACP的周长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,两同心圆的圆心为,大圆的弦切小圆于,两圆的半径分别为,则弦长=     ;若用阴影部分围成一个圆锥,则该圆锥的底面半径为     .(结果保留根号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB是⊙O的弦,AB=8cm,⊙O的半径5 cm,半径OCAB于点D,则OD的长是          cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形的边长为2,以各边为直径在正方形内画半圆,则图中阴影部分的面积为    (结果保留两位有效数字,参考数据π≈3.14)。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,AB是⊙O的直径,点C在⊙O上,△ABC的外角平分线BD交⊙O于D,DE
与⊙O相切,交CB的延长线于E.
⑴ 判断直线AC和DE是否平行,并说明理由;
⑵ 若∠A=30°,BE=1cm,分别求线段DE和 的长。(直接写出最后结果).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,两个同心圆,大圆半径为5cm,小圆的半径为4cm,若大圆的弦AB与小圆有两个公共点,则AB的取值范围是                

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知⊙O1与⊙O2外切,O1O2=8cm,⊙O1的半径为5cm,则⊙O2的半径是【   】
A.13cm.B.8cmC.6cmD.3cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知每个网格中小正方形的边长都是1,如图中的阴影图案是由三段以格点为圆心,半径分
别为1和2的圆弧围成.则阴影部分的面积是         

查看答案和解析>>

同步练习册答案