精英家教网 > 初中数学 > 题目详情
(2005•舟山)课本中,是这样引入“锐角三角函数”的:如图,在锐角α的终边OB上,任意取两点P和P1,分别过点P和P1做始边OA的垂线PM和P1M1,M和M1为垂足.我们规定,比值    叫做角α的正弦,比值    叫做角α的余弦.这是因为,由相似三角形的性质,可推得关于这些比值得两个等式:        .说明这些比值都是由    唯一确定的,而与P点在角的终边上的位置无关,所以,这些比值都是自变量α的函数.
【答案】分析:根据三角函数的定义直接填空即可,先构成直角三角形,再根据三角函数的定义,写出三角函数式;最后根据相似三角形的性质,得到三角函数值的大小只与角的大小有关,与哪一个三角形、三角形的大小无关.
解答:解:比值叫做角α的正弦,比值叫做角α的余弦.这是因为,由相似三角形的性质,可推得关于这些比值得两个等式:==.说明这些比值都是由α唯一确定.
点评:本题可以考查锐角三角函数的定义:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比边.且三角函数值的大小只与角的大小有关.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《锐角三角函数》(07)(解析版) 题型:解答题

(2005•舟山)课本中有这么一个例题:“如图,河对岸有一水塔AB.在C处测得塔顶A的仰角为30°,向塔前进12米到达D,在D处测得A的仰角为45°,求水塔AB的高”.
解这个题时,我们通常时这样去想的(分析):要求水塔AB的高,只要去寻找AB于已知量之间的关系.在这里,由于难以找到四个量之间的直接关系,我们可引进一个或两个中间量.以此作为媒介,再寻找这些量之间的关系,得到.于是,就可求得水塔的高,问题就解决了.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《锐角三角函数》(03)(解析版) 题型:填空题

(2005•舟山)课本中,是这样引入“锐角三角函数”的:如图,在锐角α的终边OB上,任意取两点P和P1,分别过点P和P1做始边OA的垂线PM和P1M1,M和M1为垂足.我们规定,比值    叫做角α的正弦,比值    叫做角α的余弦.这是因为,由相似三角形的性质,可推得关于这些比值得两个等式:        .说明这些比值都是由    唯一确定的,而与P点在角的终边上的位置无关,所以,这些比值都是自变量α的函数.

查看答案和解析>>

科目:初中数学 来源:2009年江苏省连云港市中考数学模拟试卷(一)(解析版) 题型:填空题

(2005•舟山)某军事行动中,对军队部署的方位,采用钟代码的方式来表示、例如,北偏东30°方向45千米的位置,与钟面相结合,以钟面圆心为基准,时针指向北偏东30°的时刻是1:00,那么这个地点就用代码010045来表示、按这种表示方式,南偏东40°方向78千米的位置,可用代码表示为   

查看答案和解析>>

科目:初中数学 来源:2005年浙江省舟山市中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•舟山)课本中有这么一个例题:“如图,河对岸有一水塔AB.在C处测得塔顶A的仰角为30°,向塔前进12米到达D,在D处测得A的仰角为45°,求水塔AB的高”.
解这个题时,我们通常时这样去想的(分析):要求水塔AB的高,只要去寻找AB于已知量之间的关系.在这里,由于难以找到四个量之间的直接关系,我们可引进一个或两个中间量.以此作为媒介,再寻找这些量之间的关系,得到.于是,就可求得水塔的高,问题就解决了.

查看答案和解析>>

同步练习册答案