精英家教网 > 初中数学 > 题目详情

【题目】在△ABC中,AB=15,AC=13,高AD=12,则△ABC中BC边的长为(
A.9
B.5
C.14
D.4或14

【答案】D
【解析】解:(1)如图,
锐角△ABC中,AC=13,AB=15,BC边上高AD=12,
∵在Rt△ACD中AC=13,AD=12,
∴CD2=AC2﹣AD2=132﹣122=25,
∴CD=5,
在Rt△ABD中AB=15,AD=12,由勾股定理得
BD2=AB2﹣AD2=152﹣122=81,
∴BD=9,
∴BC的长为BD+DC=9+5=14;
·(2)钝角△ABC中,AC=13,AB=15,BC边上高AD=12,

在Rt△ACD中AC=13,AD=12,由勾股定理得
CD2=AC2﹣AD2=132﹣122=25,
∴CD=5,
在Rt△ABD中AB=15,AD=12,由勾股定理得
BD2=AB2﹣AD2=152﹣122=81,
∴BD=9,
∴BC的长为DB﹣BC=9﹣5=4.
故选:D.
【考点精析】关于本题考查的勾股定理的概念,需要了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】 A2, 3关于原点的对称点的坐标是( )

A. 2, 3 B. 2, 3 C. 2, 3 D. 3, 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.

1)直接写出点A的坐标,并求出抛物线的解析式;

2)过点EEFADF,交抛物线于点G,当t为何值时,ACG的面积最大?最大值为多少?

3)在动点PQ运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以CQEH为顶点的四边形为菱形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一元二次方程x1x21的根是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了准备“迎新”汇演,七(1)班学生分成甲乙两队进行几天排练.其中甲队队长对乙队队长说:你们调5人来我们队,则我们的人数和你们的人数相同;乙队队长跟甲队队长说:你们调5人来我们队,则我们的人数是你们的人数的3.

(1)请根据上述两位队长的交谈,求出七(1)班的学生人数

(2)为了增强演出的舞台效果,全部学生需要租赁演出服装,班主任到某服装租赁店了解到:多于20套、少于50套服装的,可供选择的收费方式如下:

方式一一套服装一天收取20元,另收总计80元的服装清洗费

方式二:在一套服装一天收取20元的基础上九折,一套服装每天收取服装清洗费1元,另收每套服装磨损费5元(不按天计算)

设租赁服装x天(x为整数),请你帮班主任参谋一下:选择那种付费方式节省一些,并说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(-x)x2(-x)6=______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】盛盛同学到某高校游玩时,看到运动场的宣传栏中的部分信息(如下表):

院系篮球赛成绩公告

比赛场次

胜场

负场

积分

22

12

10

34

22

14

8

36

22

0

22

22

盛盛同学结合学习的知识设计了如下问题,请你帮忙完成下列问题:

(1)从表中可以看出,负一场积______,胜一场积_______

(2)某队在比完22场的前提下,胜场总积分能等于其负场总积分的2倍吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将多项式﹣a2+a3+1﹣a按字母a升幂排列正确的是(
A.a3﹣a2﹣a+1
B.﹣a﹣a2+a3+1
C.1+a3﹣a2﹣a
D.1﹣a﹣a2+a3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知是锐角,是钝角,且=180°,那么下列结论正确的是(   )

A. 的补角和的补角相等 B. 的余角和的补角相等

C. 的余角和的补角互余 D. 的余角和的补角互补

查看答案和解析>>

同步练习册答案