精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,C是⊙O上一点,∠ACD=∠B,AD⊥CD.

(1)求证:CD是⊙O的切线;

(2)若AD=1,OA=2,求AC的值.

【答案】(1)证明见解析;(2)2

【解析】

试题分析:(1)连接OC,由圆周角定理得出∠ACB=90°,由等腰三角形的性质得出∠B=∠BCO,证出∠OCD=∠OCA+∠BCO=∠ACB=90°,即可得出结论;

(2)证明△ACB∽△ADC,得出AC2=ADAB,即可得出结果.

试题解析:(1)证明:连接OC,如图所示AB是⊙O直径,∠ACB=90°,OB=OC,∠B=∠BCO,又∠ACD=∠B,∠OCD=∠OCA+∠ACD=∠OCA+∠BCO=∠ACB=90°,即OC⊥CD,CD是⊙O的切线;

(2)解:AD⊥CD,∠ADC=∠ACB=90°,又∠ACD=∠B,△ACB∽△ADC,AC2=ADAB=1×4=4,AC=2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=36°,∠C=64°,AD平分∠BAC,交BC于D,BE⊥AC,交AD、AC于H、E,且DF∥BE.
求∠FDC和∠AHB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A(﹣2,3),则点A关于x轴的对称点A1的坐标为;关于y轴对称点A2的坐标为 , 关于原点的对称点A3的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.

(1)求证:DC=DE;

(2)若tan∠CAB=,AB=3,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题如图1,在边长为a的正方形中
(1)画出两个长方形阴影,则阴影部分的面积是(写成两数平方差的形式);

(2)如图2,若将阴影部分裁剪下来,重新拼成一个长方形,它的长是 , 宽是 , 面积是(写成多项式乘法的形式);

(3)比较左、右两图的阴影部分面积,可以得到乘法公式(用式子表达);
(4)运用你所得到的公式计算:
①10.3×9.7
②(2m+n﹣p)(2m﹣n+p)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】题目:如图,直线a,b被直线所截,若∠1+∠7=180°,则a∥b.在下面说理过程中的括号里填写说理依据.
方法一:∵∠1+∠7=180°(已知)
而∠1+∠3=180°(平角定义)
∴∠7=∠3(
∴a∥b(
方法二::∵∠1+∠7=180°(已知)
∠1+∠3=180°(平角定义)
∴∠7=∠3(
又∠7=∠6(
∴∠3=∠6(
∴a∥b(
方法三::∵∠1+∠7=180°(已知)
而∠1=∠4,∠7=∠6(
∠4+∠6=180°(平角定义)
∴a∥b(

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD(凸四边形)中, AB=AD=BC,∠BAD=90°,连结对角线 AC,当△ACD为等腰三角形时,则∠BCD的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算(-a34(-a)3的结果是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象与反比例函数为常数,且)的图象交于A(1,a)、B两点.

(1)求反比例函数的表达式及点B的坐标;

(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及PAB的面积.

查看答案和解析>>

同步练习册答案