精英家教网 > 初中数学 > 题目详情
29、几何计算
(1)如图,OA⊥OC,OB⊥OD,若∠AOB=25°,求∠DOC的度数.

(2)用边长为10cm的正方形纸片在它的四角各剪去一个边长为xcm的正方形,然后沿虚线折叠成一个无盖的长方形盒子.
①列出表示这个长方形盒子容积的代数式.
②求当x=1.5cm时,长方形盒子的容积.
分析:(1)由OA⊥OC,OB⊥OD,则∠AOB+∠BOC=∠COD+∠BOC,得到∠AOB=∠BOC,
(2)知道小正方形边长,根据体积公式写出代数式,令关系式x=1.5,求容积.
解答:解:(1)∵OA⊥OC,OB⊥OD,
∴∠AOB+∠BOC=∠COD+∠BOC,
∴∠AOB=∠BOC,
故∠DOC=25°,

(2)①容积=(10-2x)2x,
②当x=1.5cm时,长方形盒子的容积=73.5cm3
点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某公园中央地上有一个大理石球,小明想测量球的半径,于是找了两块厚10cm的砖塞在球的两侧(如图所示),他量了下两砖之间的距离刚好是60cm,聪明的你也能算出这个大石球的半径了吗?请你建立一个用于求大理石球的几何模型,并写出你的计算过程.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

2012年广东陆丰渔政大队指挥中心(A)接到海上呼救:一艘韩国货轮在陆丰碣石湾发生船体漏水,进水速度非常迅猛,情况十分危急,18名船员需要援救.经测量货轮B到海岸最近的点C的距离BC=20km,∠BAC=22°37′,指挥中心立即制定三种救援方案
(如图1):

①派一艘冲锋舟直接从A开往B;②先用汽车将冲锋舟沿海岸线送到点C,然后再派冲锋舟前往B;③先用汽车将冲锋舟沿海岸线送到距指挥中心33km的点D,然后再派冲锋舟前往B.
已知冲锋舟在海上航行的速度为60km/h,汽车在海岸线上行驶的速度为90km/h.
(sin22°37′=
5
13
,cos22°37′=
12
13
,tan22°37′=
5
12

(1)通过计算比较,这三种方案中,哪种方案较好(汽车装卸冲锋舟的时间忽略不计)?
(2)事后,细心的小明发现,上面的三种方案都不是最佳方案,最佳方案应是:先用汽车将冲锋舟沿海岸线送到点P处,点P满足cos∠BPC=
2
3
(冲锋舟与汽车速度的比),然后再派冲锋舟前往B(如图2).
①利用现有数据,根据cos∠BPC=
2
3
,计算出汽车行AP加上冲锋舟行BP的总时间.
②在线段AC上任取一点M;然后用转化的思想,从几何的角度说明汽车行AM加上冲锋舟行BM的时间比车行AP加上冲锋舟行BP的时间要长.

查看答案和解析>>

科目:初中数学 来源: 题型:

作图与几何计算.
(1)如图1是由几个小立方块所堆成几何体俯视图,小正方形里的数字表示该位置小立方块的个数,请画出这个几何体的主视图和左视图.
(2)如图2,O为直线AE上一点,OC平分∠BOD,∠1+∠2=90°,∠2=44°,求∠AOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

几何计算
(1)如图,OA⊥OC,OB⊥OD,若∠AOB=25°,求∠DOC的度数.

(2)用边长为10cm的正方形纸片在它的四角各剪去一个边长为xcm的正方形,然后沿虚线折叠成一个无盖的长方形盒子.
①列出表示这个长方形盒子容积的代数式.
②求当x=1.5cm时,长方形盒子的容积.

查看答案和解析>>

同步练习册答案