ÏÂÃæÊÇijͬѧ¶Ô¶àÏîʽ£¨x2-4x+2£©£¨x2-4x+6£©+4½øÐÐÒòʽ·Ö½âµÄ¹ý³Ì¡£
½â£ºÉèx2-4x=y ԭʽ=£¨y+2£©£¨y+6£©+4 £¨µÚÒ»²½£©
                               =y2+8y+16 £¨µÚ¶þ²½£©
                               =£¨y+4£©2 £¨µÚÈý²½£©
                               =£¨x2-4x+4£©2 £¨µÚËIJ½£©
»Ø´ðÏÂÁÐÎÊÌ⣺
£¨1£©¸ÃͬѧµÚ¶þ²½µ½µÚÈý²½ÔËÓÃÁËÒòʽ·Ö½âµÄ
[     ]
A£®ÌáÈ¡¹«Òòʽ
B£®Æ½·½²î¹«Ê½
C£®Á½ÊýºÍµÄÍêȫƽ·½¹«Ê½
D£®Á½Êý²îµÄÍêȫƽ·½¹«Ê½
£¨2£©¸ÃͬѧÒòʽ·Ö½âµÄ½á¹ûÊÇ·ñ³¹µ×£¿£¨     £©£¨Ìî¡°³¹µ×¡±»ò¡°²»³¹µ×¡±£©Èô²»³¹µ×£¬ÇëÖ±½Óд³öÒòʽ·Ö½âµÄ×îºó½á¹û£¨     £©¡£
£¨3£©ÇëÄãÄ£·ÂÒÔÉÏ·½·¨³¢ÊÔ¶Ô¶àÏîʽ£¨x2-2x£©£¨x2-2x+2£©+1½øÐÐÒòʽ·Ö½â¡£
£¨1£©C£»£¨2£©²»³¹µ× £» £»
£¨3£©Éèx2-2x=y 
         ԭʽ=y£¨y+2£©+1 =y2+2y+1 =£¨y+1£©2 =£¨x2-2x+1£©2 =£¨x-1£©4
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

26¡¢ÏÂÃæÊÇijͬѧ¶Ô¶àÏîʽ£¨x2-4x+2£©£¨x2-4x+6£©+4½øÐÐÒòʽ·Ö½âµÄ¹ý³Ì£®
½â£ºÉèx2-4x=y
ԭʽ=£¨y+2£©£¨y+6£©+4£¨µÚÒ»²½£©
=y2+8y+16£¨µÚ¶þ²½£©
=£¨y+4£©2£¨µÚÈý²½£©
=£¨x2-4x+4£©2£¨µÚËIJ½£©
»Ø´ðÏÂÁÐÎÊÌ⣺
£¨1£©¸ÃͬѧµÚ¶þ²½µ½µÚÈý²½ÔËÓÃÁËÒòʽ·Ö½âµÄ
C
£®
A¡¢ÌáÈ¡¹«ÒòʽB£®Æ½·½²î¹«Ê½
C¡¢Á½ÊýºÍµÄÍêȫƽ·½¹«Ê½D£®Á½Êý²îµÄÍêȫƽ·½¹«Ê½
£¨2£©¸ÃͬѧÒòʽ·Ö½âµÄ½á¹ûÊÇ·ñ³¹µ×
²»³¹µ×
£®£¨Ìî¡°³¹µ×¡±»ò¡°²»³¹µ×¡±£©
Èô²»³¹µ×£¬ÇëÖ±½Óд³öÒòʽ·Ö½âµÄ×îºó½á¹û
£¨x-2£©4
£®
£¨3£©ÇëÄãÄ£·ÂÒÔÉÏ·½·¨³¢ÊÔ¶Ô¶àÏîʽ£¨x2-2x£©£¨x2-2x+2£©+1½øÐÐÒòʽ·Ö½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÃæÊÇijͬѧ¶Ô¶àÏîʽ£¨x2-4x+2£©£¨x2-4x+6£©+4½øÐÐÒòʽ·Ö½âµÄ¹ý³Ì£®
½â£ºÉèx2-4x=y£¬
ԭʽ=£¨y+2£©£¨y+6£©+4 £¨µÚÒ»²½£©
=y2+8y+16 £¨µÚ¶þ²½£©
=£¨y+4£©2£¨µÚÈý²½£©
=£¨x2-4x+4£©2£¨µÚËIJ½£©
£¨1£©¸ÃͬѧµÚ¶þ²½µ½µÚÈý²½ÔËÓÃÁËÒòʽ·Ö½âµÄ
C
C
£®
A£®ÌáÈ¡¹«Òòʽ
B£®Æ½·½²î¹«Ê½
C£®Á½ÊýºÍµÄÍêȫƽ·½¹«Ê½
D£®Á½Êý²îµÄÍêȫƽ·½¹«Ê½
£¨2£©¸ÃͬѧÒòʽ·Ö½âµÄ½á¹ûÊÇ·ñ³¹µ×£¿
²»³¹µ×
²»³¹µ×
£®£¨Ìî¡°³¹µ×¡±»ò¡°²»³¹µ×¡±£©Èô²»³¹µ×£¬ÇëÖ±½Óд³öÒòʽ·Ö½âµÄ×îºó½á¹û
£¨x-2£©4
£¨x-2£©4
£®
£¨3£©ÇëÄãÄ£·ÂÒÔÉÏ·½·¨³¢ÊÔ¶Ô¶àÏîʽ£¨x2-2x£©£¨x2-2x+2£©+1½øÐÐÒòʽ·Ö½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÃæÊÇijͬѧ¶Ô¶àÏîʽ£¨x2-4x+2£©£¨x2-4x+6£©+4½øÐзֽâÒòʽµÄ¹ý³Ì£®
½â£ºÉèx2-4x=y£®
ԭʽ=£¨y+2£©£¨y+6£©+4£¨µÚÒ»²½£©
=y2+8y+16  £¨µÚ¶þ²½£©
=£¨y+4£©2£¨µÚÈý²½£©
=£¨x2-4x+4£©2£¨µÚËIJ½£©
»Ø´ðÏÂÁÐÎÊÌ⣺
£¨1£©¸ÃͬѧµÚ¶þ²½µ½µÚÈý²½ÔËÓÃÁË·Ö½âÒòʽµÄ
C
C
£®
A£®ÌáÈ¡¹«Òòʽ  B£®ÄæÓÃƽ·½²î¹«Ê½  C£®ÄæÓÃÍêȫƽ·½¹«Ê½
£¨2£©¸Ãͬѧ·Ö½âÒòʽµÄ½á¹û²»ÕýÈ·£¬Ó¦¸üÕýΪ
£¨x-2£©4
£¨x-2£©4
£®
£¨3£©ÊÔ·Ö½âÒòʽn£¨n+1£©£¨n+2£©£¨n+3£©+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÃæÊÇijͬѧ¶Ô¶àÏîʽ£¨x2-4x+2£©£¨x2-4x+6£©+4½øÐÐÒòʽ·Ö½âµÄ¹ý³Ì£®
½â£ºÉèx-4x=y
ԭʽ=£¨y+2£©£¨y+6£©+4£¨µÚÒ»²½£©
=y2+8y+16£¨µÚ¶þ²½£©
=£¨y+4£©2£¨µÚÈý²½£©
=£¨x2-4x+4£©2£¨µÚËIJ½£©
ÇëÎÊ£º
£¨1£©¸ÃͬѧÒòʽ·Ö½âµÄ½á¹ûÊÇ·ñ³¹µ×£¿
²»³¹µ×
²»³¹µ×
£®£¨Ìî¡°³¹µ×¡±»ò¡°²»³¹µ×¡±£©
Èô²»³¹µ×£¬ÇëÖ±½Óд³öÒòʽ·Ö½âµÄ×îºó½á¹û
£¨x-2£©4
£¨x-2£©4

£¨2£©ÇëÄãÄ£·ÂÒÔÉÏ·½·¨³¢ÊÔ¶Ô¶àÏîʽ£¨x2-2x£©£¨x2-2x+2£©+1½øÐÐÒòʽ·Ö½â£®
½â£º

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÃæÊÇijͬѧ¶Ô¶àÏîʽ½øÐÐÒòʽ·Ö½âµÄ¹ý³Ì.
½â£ºÉè
ԭʽ=   £¨µÚÒ»²½£©
=       £¨µÚ¶þ²½£©
=           £¨µÚÈý²½£©
=      £¨µÚËIJ½£©
ÇëÎÊ£º£¨1£©¸ÃͬѧÒòʽ·Ö½âµÄ½á¹ûÊÇ·ñ³¹µ×£¿____________.(Ìî¡°³¹µ×¡±»ò¡°²»³¹µ×¡±)
Èô²»³¹µ×£¬ÇëÖ±½Óд³öÒòʽ·Ö½âµÄ×îºó½á¹û________________________________
£¨2£©ÇëÄãÄ£·ÂÒÔÉÏ·½·¨³¢ÊÔ¶Ô¶àÏîʽ½øÐÐÒòʽ·Ö½â.

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸