某车间有工人20名.已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利润150元,每制造一个乙种零件可获利润260元。在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.
(1)请写出此车间每天所获利润y(元)与x(人)之间的函数关系式;
(2)要使车间每天所获利润不低于24000元,你认为至少要派多少名工人去制造乙种零件才合适?
(1)y=-400x+26000;(2)15名
【解析】
试题分析:(1)根据所获利润r=甲种零件所获利润+乙种零件所获利润,可直接列出y与x之间的函数关系式;
(2)根据y的取值范围求出x的范围,当x取得最大值时即可求出制造乙种零件的人数.
(1)根据题意,可得y=150×6x+260×5(20-x)=-400x+26000(0≤x≤20);
(2)由题意,知y≥24000,即-400x+26000≥24000,
令-400x+26000=24000,
解得x=5.因为y=-400x+26000中,-400<0,
所以y的值随x的值的增大而减少,
所以要使-400x+26000≥24000,需x≤5,
即最多可派5名工人制造甲种零件,
此时有20-x=20-5=15(名).
答:至少要派15名工人制造乙种零件才合适.
考点:本题考查的是函数的应用
点评:本题主要是读懂题意,找出各个量之间的关系式,列出函数关系式或不等式即可.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某车间有工人20名.已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利润150元,每制造一个乙种零件可获利润260元。在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.
(1)请写出此车间每天所获利润y(元)与x(人)之间的函数关系式;
(2)要使车间每天所获利润不低于24000元,你认为至少要派多少名工人去制造乙种零件才合适?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com