精英家教网 > 初中数学 > 题目详情
如图,在正方形ABCD中,E为AB边的中点,G、F分别为AD、BC边上的点.若AG=1,BF=2,∠GEF=90°,则GF的长为           
3

试题分析:∵四边形ABCD是正方形,
∴∠A=∠B=90°,
∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,
∵∠GEF=90°,
∴∠GEA+∠FEB=90°,
∴∠AGE=∠FEB,∠AEG=∠EFB.
∴△AEG∽△BFE,
从而推出对应边成比例:
又∵AE=BE,
∴AE2=AG•BF=2,
推出AE=(舍负),
∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,
∴GF的长为3.
故答案为:3.
点评:此题考查相似三角形的性质的应用,利用勾股定理即可得解.易错点:如果学生没有发现相似三角形就无从入手解题了,或相似三角形对应边的比找不对.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在△ABC中,∠BAC=90°,AB<AC,M是BC边的中点,MN⊥BC交AC于点N.动点P从点B出发沿射线BA以每秒厘米的速度运动.同时,动点Q从点N出发沿射线NC运动,且始终保持MQ丄MP.设运动时间为t秒(t>0).
(1)△PBM与△QNM相似吗?以图1为例说明理由:
(2)若∠ABC=60°,AB=4厘米.
①求动点Q的运动速度;
②设△APQ的面积为S(平方厘米),求S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC中,点D、E、F分别是边长AB、BC、AC的中点,则△DEF与△ABC的面积之比为(  )

A.1:4         B.1:3        C.1:2        D.1:

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图:正方形ABCD中,过点D作DP交AC于点M、交AB于点N,交CB的延长线于点P,若MN=1,PN=3,则DM的长为 _________ 

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,现将△ABC进行折叠,使顶点A、B重合,则折痕DE=       cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

正方形ABCD边长为a,点E、F分别是对角线BD上的两点,过点E、F分别作AD、AB的平行线,如图所示,则图中阴影部分的面积之和等于           

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读下面的短文,并解答下列问题:
我们把相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同.就把它们叫做相似体.
如图,甲、乙是两个不同的正方体,正方体都是相似体,它们的一切对应线段之比都等于相似比:a:b,设S:S分别表示这两个正方体的表面积,则,又设V、V分别表示这两个正方体的体积,则
(1)下列几何体中,一定属于相似体的是 _________ 
A.两个球体;B.两个圆锥体;C.两个圆柱体;D.两个长方体.
(2)请归纳出相似体的3条主要性质:
①相似体的一切对应线段(或弧)长的比等于 _________ 
②相似体表面积的比等于 _________ 
③相似体体积的比等于 _________ 

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如果两个相似多边形的周长之比为,那么它们的面积之比为  

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:,2x﹣3y+4z=22,求:代数式x+y﹣z的值.

查看答案和解析>>

同步练习册答案