精英家教网 > 初中数学 > 题目详情

【题目】已知:∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O 重合),连接AC交射线OE于点D.设∠OAC=x°.

(1)如图1,若AB∥ON,则
①∠ABO的度数是
②当∠BAD=∠ABD时,x=;当∠BAD=∠BDA时,x=
(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.

【答案】
(1)20°;120°;6°
(2)解:①当点D在线段OB上时,

若∠BAD=∠ABD,则x=20

若∠BAD=∠BDA,则x=35

若∠ADB=∠ABD,则x=50

②当点D在射线BE上时,因为∠ABE=110°,且三角形的内角和为180°,

所以只有∠BAD=∠BDA,此时x=125.

综上可知,存在这样的x的值,使得△ADB中有两个相等的角,

且x=20、35、50、125


【解析】解:(1)①∵∠MON=40°,OE平分∠MON∴∠AOB=∠BON=20°
∵AB∥ON∴∠ABO=20°
②∵∠BAD=∠ABD∴∠BAD=20°∵∠AOB+∠ABO+∠OAB=180°∴∠OAC=120°
∵∠BAD=∠BDA,∠ABO=20°∴∠BAD=80°∵∠AOB+∠ABO+∠OAB=180°∴∠OAC=60°
所以答案是:①20 ②120,60
【考点精析】掌握平行线的性质和三角形的“三线”是解答本题的根本,需要知道两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;1、三角形角平分线的三条角平分线交于一点(交点在三角形内部,是三角形内切圆的圆心,称为内心);2、三角形中线的三条中线线交于一点(交点在三角形内部,是三角形的几何中心,称为中心);3、三角形的高线是顶点到对边的距离;注意:三角形的中线和角平分线都在三角形内.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】AB两点在数轴上的位置如图所示,其中点A对应的有理数为-4,且AB=10。动点P从点A出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒(t>0)。

1)当t=1时,AP的长为_________,点P表示的有理数为______

2)当PB=2时,求t的值;

3M为线段AP的中点,N为线段PB的中点. 在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数yy在第一象限内的图象如图,点Py的图象上一动点,PCx轴于点C,交y的图象于点A. PDy轴于点D,交y的图象于点B。.下面结论:①△ODB与△OCA的面积相等;②PAPB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP. 其中正确结论是

A①②③B①②④ C①③④D②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,BC=8,AB=6,经过点B和点D的两个动圆均与AC相切,且与AB、BC、AD、DC分别交于点G、H、E、F,则EF+GH的最小值是( )

A.6 B.8 C.9.6 D.10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.

(1)若∠A=40°,求∠DBC的度数;
(2)若AE=6,△CBD的周长为20,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图M是线段AC的中点N是线段BC的中点

1如果AC=8cmBC=6cm求MN的长

2如果AM=5cmCN=2cm求线段AB的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列等式一定成立的是( )

A. a2+a3=a5 B. a+b2=a2+b2

C. 2ab23=6a3b6 D. x-a)(x-b=x2-a+bx+ab

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果关于x的一元二次方程(k1x22x+10有两个不相等的实数根,则k的取值范围是(  )

A.k2k1B.k2k0C.k2D.k<﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A、B两地间的距离为448千米,一列慢车从A站出发,每小时行驶60千米,一列快车从B站出发,每小时行驶80千米.问:

(1)两车同时出发,相向而行,出发后多长时间相遇?

(2)两车相向而行,慢车先开28分钟,那么快车开出多长时间后两车相遇?

查看答案和解析>>

同步练习册答案