已知,如图11,二次函数图象的顶点为,与轴交于、两点(在点右侧),点、关于直线:对称.
(1)求、两点坐标,并证明点在直线上;
(2)求二次函数解析式;
(3)过点作直线∥交直线于点,、分别为直线和直线上的两个动点,连接、、,求和的最小值.
科目:初中数学 来源: 题型:
如图11,已知○为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,0).
1.求点B的坐标
2.若二次函数y=ax+bx+c的图象经过A、B、O三点,求此二次函数的解析式;
3.在(2)中的二次函数图象的OB段(不包括点O、B)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出这个最大值及此时点C的坐标;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
已知,如图11,二次函数图象的顶点为,与轴交于、两点(在点右侧),点、关于直线:对称.
(1)求、两点坐标,并证明点在直线上;
(2)求二次函数解析式;
(3)过点作直线∥交直线于点,、分别为直线和直线上的两个动点,连接、、,求和的最小值.
查看答案和解析>>
科目:初中数学 来源:2011年初中毕业升学考试(湖南娄底卷)数学 题型:解答题
(本小题10分)如图11,已知二次函数y= -x2 +mx +4m的图象与x轴交于
A(x1,0),B(x2,0)两点(B点在A点的右边),与y轴的正半轴交于点C,且(x1+x2)- x1x2=10.
(1)求此二次函数的解析式.
(2)写出B,C两点的坐标及抛物线顶点M的坐标;
(3)连结BM,动点P在线段BM上运动(不含端点B,M),过点P作x轴的垂线,垂足为H,设OH的长度为t,四边形PCOH的面积为S.请探究:四边形PCOH的面积S有无最大值?如果有,请求出这个最大值;如果没有,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com