【题目】如图,圆柱的高为,底面半径为,在圆柱下底面的点处有一只蚂蚁,它想吃到上底面处的食物,已知四边形的边、恰好是上、下底面的直径.为:蚂蚁至少要爬行多少路程才能食到食物?
科目:初中数学 来源: 题型:
【题目】已知直线AB∥CD,直线EF与AB,CD分别相交于点E,F.
(1)如图1,若∠1=60°,求∠2=__________;∠3=__________.
(2)若点P是平面内的一个动点,连结PE,PF,探索∠EPF,∠PEB,∠PFD三个角之间的关系.
①当点P在图2的位置时,可得∠EPF=∠PEB+∠PFD. 理由如下:
如图2,过点P作MN∥AB,则∠EPM=∠PEB(__________)
∵AB∥CD(已知) MN∥AB(作图)
∴MN∥CD(__________)
∴∠MPF=∠PFD (__________)
∴__________+__________=∠PEB+∠PFD(等式的性质)
即:∠EPF=∠PEB+∠PFD.请补充完整说理过程(填写理由或数学式)
②当点P在图3的位置时,此时∠EPF=80°,∠PEB=156°,则∠PFD=__________;
③当点P在图4的位置时,写出∠EPF,∠PEB,∠PFD三个角之间的关系并证明(每一步必须注明理由).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:OB、OC、OM、ON是∠AOD内的射线.
(1)如图1,若∠AOD=156°,OM平分∠AOB,ON平分∠BOD,∠BOD=96°,则∠MON的度数为 .
(2)如图2,若∠AOD=m°,∠NOC=23°,OM平分∠AOB,ON平分∠BOD,求∠COM的度数(用m的式子表示);
(3)如图3,若∠AOD=156°,∠BOC=22°,∠AOB=30°,OM平分∠AOC,ON平分∠BOD,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形ABCD中,AB=CD=8cm,BC=14cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:
(1)BP= cm(用t的代数式表示)
(2)当t为何值时,ABPDCP?
(3)当点P从点B开始运动,同时,点Q从点C出发,以v cm/秒的速度沿CD向点D运动,是否存在这样v的值,使得ABP与PQC全等?若存在,请求出v的值;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积. 某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.
(1)作AD⊥BC于D,设BD=x,用含x的代数式表示CD,则CD=________;
(2)请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;
(3)利用勾股定理求出AD的长,再计算三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,可以理解为,它表示:数轴上表示数的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点,分别用数表示,那么两点之间的距离为,反过来,式子的几何意义是:数轴上表示数的点和表示数的点之间的距离.利用此结论,回答以下问题:
(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数的点和表示数的点之间的距离是__________.
(2)数轴上点用数表示,若,那么的值为_________.
(3)数轴上点用数表示:
①若,那么的值是________.
②当时,数的取值范围是________,这样的整数有________个.
③有最小值,最小值是___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,在矩形ABCD中.点O在边AB上,∠AOC=∠BOD.求证:AO=OB.
(2)如图,AB是的直径,PA与相切于点A,OP与相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)如图①,将两块全等的三角板拼在一起,其中△ABC的边BC在直线l上,AC⊥BC且AC = BC;△EFP的边FP也在直线l上,边EF与边AC重合,EF⊥FP且EF = FP。
(1)在图①中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;
(2)将三角板△EFP沿直线l向左平移到图②的位置时,EP交AC于点Q,连接AP、BQ。猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;
(3)将三角板△EFP沿直线l向左平移到图③的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ。你认为(2)中猜想的BQ与AP所满足的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com