精英家教网 > 初中数学 > 题目详情
精英家教网如图,在等边△ABC中,AB=6,AN=2,∠BAC的平分线交BC于点D,M是AD上的动点,则BM+MN的最小值是
 
分析:要求BM+MN的最小值,需考虑通过作辅助线转化BM,MN的值,从而找出其最小值求解.
解答:精英家教网解:连接CN,与AD交于点M.则CN就是BM+MN的最小值.
取BN中点E,连接DE.
∵等边△ABC的边长为6,AN=2,
∴BN=AC-AN=6-2=4,
∴BE=EN=AN=2,
又∵AD是BC边上的中线,
∴DE是△BCN的中位线,
∴CN=2DE,CN∥DE,
又∵N为AE的中点,
∴M为AD的中点,
∴MN是△ADE的中位线,
∴DE=2MN,
∴CN=2DE=4MN,
∴CM=
3
4
CN.
在直角△CDM中,CD=
1
2
BC=3,DM=
1
2
AD=
3
3
2

∴CM=
CD2+MD2
=
3
2
7

∴CN=
4
3
×
3
2
7
=2
7

∵BM+MN=CN,
∴BM+MN的最小值为2
7

故答案为:2
7
点评:考查等边三角形的性质和轴对称及勾股定理等知识的综合应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,在等边△ABC的边BC上任取一点D,作∠ADE=60°,DE交∠C的外角平分线于E,则△ADE是
等边
三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的面积为(  )
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,在等边△ABC中,AD是∠BAC的平分线,点E在AC边上,且∠EDC=15°.
(1)试说明直线AD是线段BC的垂直平分线;
(2)△ADE是什么三角形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,D是AC的中点,延长BC到点E,使CE=CD,AB=10cm.
(1)求BE的长;
(2)△BDE是什么三角形,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等边△ABC中,BF是高,D是BF上一点,且OF=AF,作OE⊥BF,垂足为D,且OE=OB,连AE、AO、BE,求证:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步练习册答案