精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线,交AB于点E,交CA的延长线于点F.
(1)求证:EF⊥AB;
(2)若∠C=30°,EF= ,求EB的长.

【答案】
(1)证明:连接AD、OD

∵AC为⊙O的直径,

∴∠ADC=90°,

又∵AB=AC,

∴CD=DB,又CO=AO,

∴OD∥AB,

∵FD是⊙O的切线,

∴OD⊥EF,

∴FE⊥AB


(2)解:∵∠C=30°,

∴∠AOD=60°,

∴∠F=30°,

∴OA=OD= OF,

∵∠AEF=90°EF=

∴AE=

∵OD∥AB,OA=OC=AF,

∴OD=2AE=2 ,AB=2OD=4

∴EB=3


【解析】(1)连接AD、OD,根据直径所对的圆周角是直角求出∠ADC=90°,根据等腰三角形的性质证明D是BC的中点,得到OD是△ABC的中位线,根据切线的性质证明结论;(2)根据三角形的内角和得到∠AOD=60°,∠F=30°,根据直角三角形的性质得到OA=OD= OF,求得AE= 根据平行线等分线段定理得到OD=2AE=2 ,AB=2OD=4 ,由线段的和差即可得到结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1到8这八个整数,现提供统计图的部分信息如图.

请解答下列问题:
(1)根据统计图,写出这50名工人加工出的合格品数的中位数.
(2)写出这50名工人加工出合格品数的众数的可能取值.
(3)厂方认定,工人在单位时间内加工出的合格品数不低于2件为技能合格,否则,将接受技能再培训,已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在ABC中,ABC的外角∠ABD的平分线与∠ACB的平分线交于点OMN过点O,且MNBC,分别交ABAC于点MN

求证:(1)MO=MB;(2)MN=CNBM

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀把它均分成四个小长方形,然后按图②的形状拼成一个正方形.

(1)你认为图②中的阴影部分的正方形的边长等于多少?

(2)请用两种不同的方法求图②中阴影部分的面积.

(3)观察图②你能写出下列三个代数式之间的等量关系吗?

代数式:(mn)2,(mn)2mn.

(4)根据(3)题中的等量关系,解决如下问题:

已知ab=7,ab=5,求(ab)2的值.(写出过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AOCBOD都是直角,BOC=65°

(1)求AOD的度数;

(2)∠AOBDOC有何大小关系?

(3)若不知道BOC的具体度数,其他条件不变,(2)的关系仍成立吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB、CD交于点O,OE平分∠AOD,OF平分∠BOD.

(1)AOC=50°,求∠DOF与∠DOE的度数,并计算∠EOF的度数;

(2)当∠AOC的度数变化时,∠EOF的度数是否变化?若不变,求其值;若变化,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,∠E∠F90°∠B∠CAEAF.有以下结论:①EMFN②CDDN③∠FAN∠EAM④△ACN≌△ABM.其中正确的有( ).

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2+mx+m﹣2=0.
(1)求证:无论m取何值时,方程总有两个不相等的实数根;
(2)设方程两实数根分别为x1 , x2 , 且满足x12+x22=﹣3x1x2 , 求实数m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=c,AC=b.AD△ABC的角平分线,DE⊥ABE,DF⊥ACF,EFAD相交于O,已知△ADC的面积为1.

(1)证明:DE=DF;

(2)试探究线段EFAD是否垂直?并说明理由;

(3)若△BDE的面积是△CDF的面积2倍.试求四边形AEDF的面积.

查看答案和解析>>

同步练习册答案