精英家教网 > 初中数学 > 题目详情
10.计算:($\frac{3}{2}$$\sqrt{1\frac{2}{3}}$+$\sqrt{1\frac{1}{4}}$)2

分析 利用完全平方公式进行计算.

解答 解:原式=$\frac{9}{4}×\frac{5}{3}+2×\frac{3}{2}\sqrt{\frac{5}{3}}×\sqrt{\frac{5}{4}}+\frac{5}{4}$
=$\frac{15}{4}+3\sqrt{\frac{25}{12}}+\frac{5}{4}$
=$5+\frac{{5\sqrt{3}}}{2}$.

点评 本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.如图,小丽想知道自家门前小河的宽度,于是她测出如下数据:在河岸选取A点,A点对岸选取参照点C,测得∠A=30°;她沿河岸向前走了30米选取点B,并测得∠CBD=60°.根据数据能否测得小河宽度?若能请算出小河宽度,若不能请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.长、宽分别为a、b长长方形,它的周长为16,面积为10,则a2b+ab2的值为80.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知:如图,以矩形ABCD的对角线AC的中点O为圆心,OA长为半径作⊙O,过点B作BK⊥AC,垂足为K,过D作DH∥KB,DH分别与AC,AB,⊙O及CB的延长线相交于点E,F,G,H,且F是EG的中点.
(1)求证:点D在⊙O上;
(2)求证:F是AB的中点;
(3)若DE=4,求⊙O的半径和△BFH的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知,OB∥AC,∠B=∠A=110°,试回答下列问题:

(1)如图①,说明BC∥OA的理由.
(2)如图②,若点E、F在线段BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.则∠EOC等于35度;(在横线上填上答案即可).
(3)在(2)的条件下,若左右平行移动AC,如图③,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.
(4)在(2)的条件下,如果平行移动AC的过程中,如图③,若使∠OEB=∠OCA,此时∠OCA等于52.5度.(在横线上填上答案即可).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.【问题提出】如图1.△ABC是等边三角形,点D在线段AB上.点E在直线BC上.且∠DEC=∠DCE.求证:BE=AD;
【类比学习】如图2.将条件“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变.判断线段AB、BE、BD之间的数量关系,并说明理由.
【扩展探究】如图3.△ABC是等腰三角形,AB=AC,∠BAC=120°,点D在线段AB的反向延长线上,点E在直线BC上,且∠DEC=∠DCE,【类比学习】中的线段AB、BE、BD之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出线段AB,BE,BD之间的数量.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.为迎接常熟市文明城市创建工作,某校八年级一班开展了“社会主义核心价值观、未成年人基本文明礼仪规范”的知识竞赛活动,成绩分为A、B、C、D四个等级,并将收集的数据绘制了两幅不完整的统计图.请你根据图中所给出的信息,解答下列各题:
(1)求八年级一班共有多少人;
(2)补全折线统计图;
(3)在扇形统计图中等极为“D”的部分所占圆心角的度数为108°;
(4)若等级A为优秀,求该班的优秀率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在△ABC中,AB=BC,BD⊥AC于点D.
(1)如图1,当∠ABC=90°时,若CE平分∠ACB,交AB于点E,交BD于点F.
①求证:△BEF是等腰三角形;
②求证:BD=$\frac{1}{2}$(BC+BF);
(2)点E在AB边上,连接CE.若BD=$\frac{1}{2}$(BC+BE),在图2中补全图形,判断∠ACE与∠ABC之间的数量关系,写出你的结论,并写出求解∠ACE与∠ABC关系的思路.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.先化简,再求值:$\frac{x-2}{{x}^{2}-1}$•$\frac{x+1}{{x}^{2}-4x+4}$+$\frac{1}{x-1}$,从-1,0,1三个数中选一个合适的,代入求值.

查看答案和解析>>

同步练习册答案