分析 (1)由旋转及平移的性质可得到∠DEB+∠GFE=90°,可得出结论;
(2)由旋转和平移的性质可得BE=CB,CG∥BE,从而可证明四边形CBEG是矩形,再结合CB=BE可证明四边形CBEG是正方形.
解答 (1)解:FG⊥ED.
理由如下:
∵△ABC绕点B顺时针旋转90°至△DBE后,
∴∠DEB=∠ACB,
∵把△ABC沿射线平移至△FEG,
∴∠GFE=∠A,
∵∠ABC=90°,
∴∠A+∠ACB=90°,
∴∠DEB+∠GFE=90°,
∴∠FHE=90°,
∴FG⊥ED;
(2)证明:根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,
∵CG∥EB,
∴∠BCG=∠CBE=90°,
∴∠BCG=90°,
∴四边形BCGE是矩形,
∵CB=BE,
∴四边形CBEG是正方形.
点评 本题主要考查旋转和平移的性质,掌握旋转和平移的性质是解题的关键,即旋转或平移前后,对应角、对应边都相等.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 4×105 | B. | 4×106 | C. | 4×10-5 | D. | 4×10-6 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2$\sqrt{5}$ | B. | 2$\sqrt{3}$ | C. | 4 | D. | 2$\sqrt{10}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
应试者 | 测 试 成 绩 | ||
公关能力 | 计算机能力 | 创新能力 | |
甲 | 88 | 50 | 72 |
乙 | 45 | 74 | 85 |
丙 | 67 | 70 | 67 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com