£¨2012•¾²º£ÏضþÄ££©ÏÖÓÐA¡¢BÁ½¸ö°à¼¶£¬Ã¿¸ö°à¼¶¸÷ÓÐ45ÃûѧÉú²Î¼ÓÒ»´Î²âÑ飬ÿÃû²Î¼ÓÕß¿É»ñµÃ0¡¢1¡¢2¡¢3¡¢4¡¢5¡¢6¡¢7¡¢8¡¢9·ÖÕ⼸ÖÖ²»Í¬·ÖÖµÖеÄÒ»ÖÖ£®²âÊÔ½á¹ûA°àµÄ³É¼¨ÈçÏÂͼËùʾ£¬B°àµÄ³É¼¨Èç±íËùʾ£®
·ÖÊý 0 1 2 3 4 5 6 7 8 9
ÈËÊý 1 3 5 7 6 8 6 4 3 2
Óɹ۲ìËùµÃ£¬
B
B
°àµÄ·½²î½Ï´ó£»ÈôÁ½°àºÏ¼Æ¹²ÓÐ60È˼°¸ñ£¬ÎʲμÓÕß×îÉÙ»ñ
4
4
·ÖÖµ¿ÉÒÔ¼°¸ñ£®
·ÖÎö£º¸ù¾Ý·½²îµÄÒâÒ壺·´Ó³Ò»×éÊý¾ÝµÄ²¨¶¯´óС£¬·½²îÔ½´ó£¬²¨¶¯ÐÔÔ½´ó£¬·´Ö®Ò²³ÉÁ¢£»¼ÆËãµÚ60È˵ķÖÊý¼´¿É£®
½â´ð£º½â£º¹Û²ìͼÏó¿ÉÖª£¬A°à³É¼¨·Ö²¼¼¯ÖУ¬¹Ê¿ÉµÃB°àµÄ·½²î½Ï´ó£»
¾Ýͳ¼Æ±í¿ÉÖª£ºÁ½¸ö°àµÄ³É¼¨´Ó¸ßµ½µÍÅŵ½60Ãûʱ£¬Îª4·Ö£»
ÈôÁ½°àºÏ¼Æ¹²ÓÐ60È˼°¸ñ£¬²Î¼ÓÕß×îÉÙ»ñ4·Ö²Å¿ÉÒÔ¼°¸ñ£®
¹Ê´ð°¸ÎªB£»4£®
µãÆÀ£º±¾Ì⿼²é·½²îµÄÒâÒ壺Ëü·´Ó³ÁËÒ»×éÊý¾ÝµÄ²¨¶¯´óС£¬·½²îÔ½´ó£¬²¨¶¯ÐÔÔ½´ó£¬·´Ö®Ò²³ÉÁ¢£®Í¬Ê±ÒªÑ§»á¿´Í³¼Æͼ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¾²º£ÏضþÄ££©Èçͼ£¬Å×ÎïÏßm£ºy=ax2+b£¨a£¼0£¬b£¾0£©ÓëxÖáÓÚµãA¡¢B£¨µãAÔÚµãBµÄ×ó²à£©£¬ÓëyÖá½»ÓÚµãC£®½«Å×ÎïÏßmÈƵãBÐýת180¡ã£¬µÃµ½ÐµÄÅ×ÎïÏßn£¬ËüµÄ¶¥µãΪC1£¬ÓëxÖáµÄÁíÒ»¸ö½»µãΪA1£®ÈôËıßÐÎAC1A1CΪ¾ØÐΣ¬Ôòa£¬bÓ¦Âú×ãµÄ¹ØϵʽΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¾²º£ÏضþÄ££©ÔÚ1¡Á3µÄ¾ØÐÎÄÚ²»ÖصþµØ·ÅÁ½¸öÓë´ó¾ØÐÎÏàËƵÄС¾ØÐΣ¬ÇÒÿ¸öС¾ØÐεÄÿÌõ±ßÓë´ó¾ØÐεÄÒ»Ìõ±ßƽÐУ®
£¨¢ñ£©Èçͼ¢Ù·ÅÖÃʱ£¬Á½¸öС¾ØÐÎÖܳ¤ºÍ£¨Á½¸öС¾ØÐÎÖصþµÄ±ßÒªÖظ´¼ÆË㣩Ϊ
16
3
16
3
£®
£¨¢ò£©ÔõÑù·ÅÖòÅÄÜʹÁ½¸öС¾ØÐÎÖܳ¤ºÍ×î´ó£¿ÔÚͼ¢ÚÖл­³öͼÐΣ¬Æä×î´óֵΪ
88
9
88
9
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¾²º£ÏضþÄ££©ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Á½¸öÈ«µÈµÄÖ±½ÇÈý½Ç°åOABºÍDCEÖصþÔÚÒ»Æ𣬡ÏAOB=60¡ã£¬B£¨2£¬0£©£®¹Ì¶¨¡÷OAB²»¶¯£¬½«¡÷DCE½øÐÐÈçϲÙ×÷£º
£¨¢ñ£© Èçͼ¢Ù£¬¡÷DCEÑØxÖáÏòÓÒƽÒÆ£¨DµãÔÚÏ߶ÎABÄÚÒƶ¯£©£¬Á¬½ÓAC¡¢AD¡¢CB£¬ËıßÐÎADBCµÄÐÎ×´ÔÚ²»¶ÏµÄ±ä»¯£¬ËüµÄÃæ»ý±ä»¯Âð£¿Èô²»±ä£¬Çó³öÆäÃæ»ý£»Èô±ä»¯£¬Çë˵Ã÷ÀíÓÉ£®
£¨¢ò£©Èçͼ¢Ú£¬µ±µãDΪOBµÄÖеãʱ£¬ÇëÄã²ÂÏëËıßÐÎADBCµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£®
£¨¢ó£©Èçͼ¢Û£¬ÔÚ£¨¢ò£©ÖУ¬½«µãD¹Ì¶¨£¬È»ºóÈÆDµã°´Ë³Ê±Õ뽫¡÷DCEÐýת30¡ã£¬ÔÚxÖáÉÏÇóÒ»µãP£¬Ê¹|AP-CP|×î´ó£®ÇëÖ±½Óд³öPµãµÄ×ø±êºÍ×î´óÖµ£¬²»ÒªÇó˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¾²º£ÏضþÄ££©ÒÑÖª¶þ´Îº¯Êýy1=ax2+bx+c£¨a¡Ù0£©µÄͼÏó¾­¹ýÈýµã£¨1£¬0£©£¬£¨-3£¬0£©£¬£¨0£¬-
3
2
£©£®
£¨¢ñ£©Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨¢ò£©Èô£¨¢ñ£©ÖеĶþ´Îº¯Êý£¬µ±xÈ¡a£¬b£¨a¡Ùb£©Ê±º¯ÊýÖµÏàµÈ£¬ÇóxÈ¡a+bʱµÄº¯ÊýÖµ£»
£¨¢ó£©Èô·´±ÈÀýº¯Êýy2=
k
x
£¨k£¾0£¬x£¾0£©µÄͼÏóÓ루¢ñ£©ÖеĶþ´Îº¯ÊýµÄͼÏóÔÚµÚÒ»ÏóÏÞÄڵĽ»µãΪA£¬µãAµÄºá×ø±êΪx0Âú×ã2£¼x0£¼3£¬ÊÔÇóʵÊýkµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸