【题目】“太原市批发市场”与“西安市批发市场”之间的商业往来频繁, 如图,“太原市批发市场”“西安市批发市场”与“长途汽车站”在同一线路上,每天中午12:00一辆客车由“太原市批发市场”驶往“长途汽车站”,一辆货车由“西安市批发市场”驶往“太原市批发市场”,假设两车同时出发,匀速行驶,图2分别是客车、货车到“长途汽车站”的距离与行驶时间之间的函数图像.
请你根据图象信息解决下列问题:
(1)由图 2 可知客车的速度为 km/h,货车的速度为 km/h;
(2)根据图 2 直接写出直线 BC 的函数关系式为 ,直线 AD 的函数关系式为 ;
(3)求点B的坐标,并解释点B的实际意义.
【答案】(1)60,30;(2),;(3)点的坐标为,点代表的实际意义是此时客车和货车相遇.
【解析】
(1)由图象可知客车6小时行驶的路程是360千米,货车2小时行驶的路程为60千米,从而可以求得客车和货车的速度;
(2)先求出点D的横坐标,然后利用待定系数法,利用点(0,360)和(6,0)求出直线BC的解析式,利用点A和点D坐标求出直线AD的解析式,即可得到答案.
(3)把直线BC和直线AD联合,组成方程组,即可求出点B的坐标,然后得到答案.
解:由图象可得,
客车的速度是:360÷6=60 km/h,
货车的速度是:km/h,
故答案为:60;30.
根据题意,货车行驶全程所用的时间为:小时;
∴点D的坐标为(14,360);
设直线BC为,把点(0,360)和(6,0)代入,得
,解得:,
∴直线BC为:;
设直线AD为,把点A(2,0)和点D(14,360)代入,得
,解得:,
∴直线AD为:;
故答案为:,;
由知,客车由“太原市批发市场”到“长途汽车站”对应的函数关系式为:
货车由“长途汽车站”到“太原市批发市场”对应的函数关系式为:,
解得:;
点的坐标为:;
∴点代表的实际意义是此时客车和货车相遇.
科目:初中数学 来源: 题型:
【题目】如图,和都是等边三角形,和交于点.
(1)求证:;
(2)下列结论中,正确的有________个.
①;②;③平分;④平分.
(3)请选择(2)中任一正确结论进行证明.你选的序号是 _________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,转盘的白色扇形和黑色扇形的圆心角分别为240°和120°.让转盘自由转动2次,则指针一次落在白色区域,另一次落在黑色区域的概率是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,⊙O是△ABC的外接圆, =,点D在边BC上,AE∥BC,AE=BD.
(1)求证:AD=CE;
(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有甲,乙两个工程队分别同时开挖两条 600 m 长的隧道,所挖遂道长度 y(m)与挖掘时间x(天)之间的函数关系如图所示.则下列说法中,错误的是( )
A.甲队每天挖 100 m
B.乙队开挖两天后,每天挖50米
C.甲队比乙队提前2天完成任务
D.当时,甲、乙两队所挖管道长度相同
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.
(1)判断AF与⊙O的位置关系并说明理由;
(2)若⊙O的半径为4,AF=3,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF一定是平行四边形的是( )
A.AE=CFB.DE=BFC.∠ADE=∠CBFD.∠AED=∠CFB
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论: ① c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am+bm+a>0(m≠﹣1);⑤设A(100,y),B(﹣100,y)在该抛物线上,则y>y.其中正确的结论有___________ .(写出所有正确结论的序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com