精英家教网 > 初中数学 > 题目详情
5、若三角形的三边长度均为整数,其中两边长的差是7,且三角形的周长是奇数,则第三边长可能是(  )
分析:根据两边的差可判定这两边为一奇一偶,因为周长为奇数,则另一边一定为偶数,再根据三角形两边之差小于第三边即可求得第三边的长.
解答:解:设三角形三边长度为a,b,c、
∵a-b=7,
∴a与b为一奇一偶,
∵a+b+c为奇数,
∴c一定是偶数,
∵c>a-b=7,
∴第三边长可能是8,
故选B.
点评:此题主要考查三角形三边关系:三角形中两边之差小于第三边.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

命题:若三角形的三边的长度均大于4,则它的面积一定大于l.在下面的平面直角坐标系中画出图形,并利用该图形说明该命题为假命题(即指出你所画图形的边均大于4,而面积不大于1).
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

若三角形的三边长度均为整数,其中两边长的差是7,且三角形的周长是奇数,则第三边长可能是


  1. A.
    9
  2. B.
    8
  3. C.
    7
  4. D.
    6

查看答案和解析>>

科目:初中数学 来源: 题型:

若三角形的三边长度均为整数,其中两边长的差是7,且三角形的周长是奇数,则第三边长可能是   [    ]

A.9  .  B.8.   C.7.      D.6.

查看答案和解析>>

科目:初中数学 来源:2010年广东省东莞市清溪中学初三数学竞赛试卷(解析版) 题型:选择题

若三角形的三边长度均为整数,其中两边长的差是7,且三角形的周长是奇数,则第三边长可能是( )
A.9
B.8
C.7
D.6

查看答案和解析>>

同步练习册答案