精英家教网 > 初中数学 > 题目详情
如图,圆在正方形的内部沿着正方形的四条边运动一周,并且始终保持与正方形的边相切.
(1)在图中,把圆运动一周覆盖正方形的区域用阴影表示出来;
(2)当圆的直径等于正方形的边长一半时,该圆运动一周覆盖正方形的区域的面积是否最大?并说明理由.

【答案】分析:(1)本题要先求出覆盖面积与圆的半径的函数关系式,圆在正方形中运动时覆盖的部分如图所示,中间正方形的面积易求得,而大正方形四角的面积可用以圆的直径为边长的小正方形的面积-一个圆的面积来求得.
(2)设出正方形的边长和圆的半径,根据上面得出面积求法可得出关于覆盖部分面积和圆半径的函数关系式,根据函数的性质即可判断出当圆的直径等于正方形的边长一半时,该圆运动一周覆盖正方形的区域的面积是否最大.
解答:解:(1)圆运动一周覆盖正方形的区域用阴影表示如下:

(2)圆的直径等于正方形的边长一半时,覆盖区域的面积不是最大,理由如下:
设正方形的边长为a,圆的半径为r,覆盖区域的面积为s.
∵圆在正方形的内部,
∴0<r≤
由图可知:S=a2-[(a-4r)2+4r2-πr2],
=-(20-π)r2+8ar,
=-(20-π)(r-2+
∵0<
∴当r=时,S有最大值,

∴圆的直径等于正方形的边长一半时,面积不是最大.
点评:本题主要考查了正方形和圆的性质、二次函数的应用、图形面积的求法等知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(Ⅰ)如图1,在正方形ABCD内,已知两个动圆⊙O1与⊙O2互相外切,且⊙O1与边AB、AD相切,⊙O2与边BC、CD相切.若正方形ABCD的边长为1,⊙O1与⊙O2的半径分别为r1,r2
①求r1与r2的关系式;
②求⊙O1与⊙O2面积之和的最小值.
(Ⅱ)如图2,若将(Ⅰ)中的正方形ABCD改为一个宽为1,长为
32
的矩形,其他条件不变,则⊙O1与⊙O2面积的和是否存在最小值,若不存在,请说明理由;若存在,请求出这个最小值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•陕西)问题探究:
(1)请在图①中作出两条直线,使它们将圆面四等分;
(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.
问题解决:
(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年江苏泰州永安初级中学九年级上学期期中考试数学试卷(解析版) 题型:解答题

问题探究:

(1)请在图①中作出两条直线,使它们将圆面四等分;

(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.

问题解决:

(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.

 

 

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(陕西卷)数学(解析版) 题型:解答题

问题探究

(1)请在图①中作出两条直线,使它们将圆面四等分;

(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M),使它们将正方形ABCD的面积四等分,并说明理由.

问题解决

(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=,CD=,且,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?若存在,求出BQ的长;若不存在,说明理由.

 

 

查看答案和解析>>

科目:初中数学 来源:2013年陕西省中考数学试卷(解析版) 题型:解答题

问题探究:
(1)请在图①中作出两条直线,使它们将圆面四等分;
(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.
问题解决:
(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案