精英家教网 > 初中数学 > 题目详情
26、如图,在钝角△ABC中,点D、E分别是边AC、BC的中点,且DA=DE.有下列结论:①∠1=∠2;②∠1=∠3;③∠B=∠C;④∠B=∠3.其中一定正确的结论有(  )个.
分析:由D、E是AC、AB中点,可知DE是△ABC的中位线,那么DE∥AB,即∠1=∠3,又AD=DE,又可得∠2=∠3,那么可知①②是正确的,有D是AC中点,AD=DE,可证CD=DE,再利用DE∥AB,可得出∠B=∠C.在Rt△AEC中,∠2不一定等于∠C,所以④不正确.
解答:解:由题意可证明△ADE、△DEC、△ABC都是等腰三角形,△AEC是直角三角形,则结论正确的是①②③.
故选D.
点评:此题主要考查等腰三角形的性质和判定,三角形中位线的利用及平行线的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、如图,在钝角△ABC中,点D,E分别是边AC,BC的中点,且DA=DE,那么下列结论错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在钝角△ABC中,∠A=30°,则tanA的值是(  )
A、
3
B、
3
2
C、
3
3
D、无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在钝角△ABC中,AB=AC,以BC为直径作⊙O,⊙O与BA、CA的延长线分别交于D、E两点精英家教网,连接AO、BE、DC.
(1)求证:△ABO∽△CBD;
(2)若AB=2AD,且BC=2,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在钝角△ABC中,AB=AC,以BC为直径作⊙O,⊙O与BA、CA的延长线分别交于E、D两点,连接AO、DB、EC,试写出图中三对全等三角形,并对其中一对全等三角形进行证明.

查看答案和解析>>

同步练习册答案