精英家教网 > 初中数学 > 题目详情

如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.
(1)求抛物线的对称轴;
(2)写出A,B,C三点的坐标并求抛物线的解析式;
(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.
(4)在抛物线对称轴上是否存在点M,使点M到点A和B的距离之差最大?若存在,直接写出所有符合条件的点M坐标;不存在,请说明理由.

解:(1)对称轴为x=-=2.5,即抛物线y=ax2-5ax+4的对称轴是直线x=2.5;

(2)令x=0,则y=4,
∴点C的坐标为(0,4),
又∵BC∥x轴,点B,C关于对称轴对称,
∴点B的坐标为(5,4),
又∵AC=BC,
∴AC=BC=5,OA=3,点A在x轴上,
∴点A的坐标为A(-3,0),
∵抛物线y=ax2-5ax+4经过点A,
∴9a+15a+4=0,
解得,a=-
∴抛物线的解析式是y=-x2+x+4,
∴A,B,C三点的坐标分别是(-3,0),(5,4),(0,4),抛物线的解析式是y=-x2+x+4;

(3)存在符合条件的点P共有3个.以下分三类情形探索.
设抛物线对称轴与x轴交于N,与CB交于M.
过点B作BQ⊥x轴于Q,
易得BQ=4,AQ=8,AN=5.5,BM=
①以AB为腰且顶角为角A的△PAB有1个:△P1AB.
∴AB2=AQ2+BQ2=82+42=80;
在Rt△ANP1中,P1N2=AP12-AN2=AB2-AN2 =80-(5.5)2 =
∴P1,-);
②以AB为腰且顶角为角B的△PAB有1个:△P2AB.
在Rt△BMP2中,MP22=BP22-BM2=AB2-BM2=
∴P2,4-);
③以AB为底,顶角为角P的△PAB有1个,即△P3AB.
画AB的垂直平分线交抛物线对称轴于P3,此时平分线必过等腰△ABC的顶点C.
过点P3作P3K垂直y轴,垂足为K,
∵∠CP3K=∠ABQ,∠CKP3=∠AQB,
∴Rt△P3CK∽Rt△BAQ.
∴P3K:CK=BQ:AQ=1:2.
∵P3K=2.5
∴CK=5,于是OK=1,
∴P3,-1);

(4)直线AC交抛物线对称轴于点M,连接MB.
∵对称轴x=是线段BC的垂直平分线,
∴MB=MC,
∴MA-MB=MA-MC=AC;
在抛物线对称轴上任取另外一点M′,则M′A-M′B=M′A-M′C<AC(三角形两边之差小于第三边),
∴线段AC为差值最大值,
根据A,C坐标得出,直线AC的解析式为y=x+4.
则点M的坐标为().
分析:(1)根据对称轴x=-,代入求出即可;
(2)令x=0,求出C的坐标,根据抛物线的对称求出点B的坐标,由AB=BC=5,OA=4,得到A的坐标,代入解析式即可求出解析式;
(3)分三种情况讨论:
①以AB为腰且顶角为∠A,先求出AB的值,再利用等腰三角形的性质结合勾股定理求出P1N的长,即可求出P1的坐标;
②以AB为腰且顶角为角B,根据MN的长和MP2的长,求出P2的纵坐标,已知其横坐标,可得其坐标;
③以AB为底,顶角为角P时,依据Rt△P3CK∽Rt△BAQ即可求出OK和P3K的长,可得P3坐标;
(4)在抛物线的对称轴确定一点M,使|AM-BM|的值最大时,点M为直线AC与抛物线对称轴的交点.
点评:本题主要考查的是二次函数综合题.解题时,注意对线段的垂直平分线定理、勾股定理、用待定系数法求二次函数的解析式、二次函数图象上点的坐标特征等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,直线y=ax+b与抛物线y=ax2+bx+c的图象在同一坐标系中可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=-ax2-ax+1经过点P(-
1
2
9
8
),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D精英家教网两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=-ax2+ax+6a交x轴负半轴于点A,交x轴正半轴于点B,交y轴正半轴于点D,精英家教网O为坐标原点,抛物线上一点C的横坐标为1.
(1)求A,B两点的坐标;
(2)求证:四边形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+ax+c与y轴交于点C(0,-2),精英家教网与x轴交于点A、B,点A的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)M是线段OB上一动点,N是线段OC上一动点,且ON=2OM,分别连接MC、MN.当△MNC的面积最大时,求点M、N的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与线段AC交于点F,点D的坐标为(-1,0).问:是否存在直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案