精英家教网 > 初中数学 > 题目详情
24、如图(1),已知△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B、C在A、E的异侧,BD⊥AE于D,CE⊥AE于E.
(1)求证:BD=AE.
(2)猜想:BD与DE、CE之间的关系,并证明你的猜想.
(3)若直线AE绕A点旋转到图(2)位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?直接写出结果不需说明理由.
分析:(1)在直角三角形中,由题中条件可得∠ABD=EAC,又有AB=AC,则有一个角及斜边相等,则可判定两三角形全等;
(2)有三角形全等可得三角形对应边相等,进而通过线段之间的转化,可得出结论;
(3)由题中条件同样可得出Rt△BAD≌Rt△AEC,得出对应线段相等,进而可得线段之间的关系.
解答:解:(1)证明∵∠BAC=90°,BD⊥AE,CE⊥AE
∴∠ABD+∠BAD=90°∠BAD+∠EAC=90,
∴∠ABD=∠EAC(2分)
在Rt△BDA和Rt△AEC中,∠ABD=∠EAC,AB=AC
∴Rt△BAD≌Rt△AEC,
∴BD=AE(5分)
(2)∵Rt△BAD≌Rt△AEC
∴AD=CE,BD=AE(6分)
∴BD=AE=AD+DE=CE+DE(10分)
(3)BD=DE-CE.
理由:∵∠BAC=90°,BD⊥AE,CE⊥AE
∴∠ABD+∠BAD=90°∠BAD+∠EAC=90,
∴∠ABD=∠EAC,
在Rt△BDA和Rt△AEC中,∠ABD=∠EAC,AB=AC
∴Rt△BAD≌Rt△AEC,
∴BD=AE,AD=CE,
∴BD=AE=DE-AD=DE-CE.
点评:本题主要考查了全等三角形的判定及性质问题,能够熟练运用其性质求解线段之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、中国足球队首次进入世界杯决赛圈,实现了近五十年的愿望.足球一般是由许多黑白相间的小皮块缝合而成的,黑块呈五边形,白块呈六边形(如图所示),已知黑块有12块,则白块有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.
小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.
请按照小萍的思路,探究并解答下列问题:
(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形;
(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,?ABCD中,已知AB=9cm,AD=6cm,BE平分∠ABC交DC边于点E,则DE等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将一个长方形纸条折成如图的形状,若已知∠1=130°,则∠2=
65
65
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图.
(1)已知AB∥CD,EF∥MN,且∠BOH=110°,求∠DHF和∠CGN的度数.
(2)请你观察(1)中的结果,找出其中的规律,并用文字表述出来.
(3)根据(2)中的结论,若两个角的两边分别平行,且其中一个角的度数是另一个角的2倍,求这两个角的度数.

查看答案和解析>>

同步练习册答案