精英家教网 > 初中数学 > 题目详情

【题目】已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b﹣1)2=0,A、B之间的距离记作|AB|,定义:|AB|=|a﹣b|.

(1)求线段AB的长|AB|;

(2)设点P在数轴上对应的数为x,当|PA|﹣|PB|=2时,求x的值;

(3)若点PA的左侧,M、N分别是PA、PB的中点,当PA的左侧移动时,下列两个结论:

①|PM|+|PN|的值不变;②|PN|﹣|PM|的值不变,其中只有一个结论正确,请判断出正确结论,并求其值.

【答案】(1)5;(2);(3) .

【解析】

试题(1)应用非负数的性质得,a+4=0b-1=0,解得ab的值,进而求得|AB|的值;

2)应考虑到ABP三点之间的位置关系的多种可能解题;

3)当PA的左侧移动时,设点P对应的数为x,列式求出|PN|-|PM|的值即可.

试题解析:解:(1)由题意得a+4=0b-1=0,解得a=-4b=1,所以|AB|=1--4=5

2)当P在点A左侧时,|PA|-|PB|=-|PB|-|PA|=-|AB|=-5≠2

P在点B右侧时,|PA|-|PB|=|AB|=5≠2

上述两种情况的点P不存在,

PAB之间时,|PA|=|x--4|=x+4|PB|=|x-1|=1-x

∵|PA|-|PB|=2x4)-(1x)=2∴x=

3)第个结论正确,|PN||PM|=

∵|PN|-|PM|=|PB|-|PA|=|AB|=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】用四个长为m,宽为n的相同长方形按如图方式拼成一个正方形.

(1).请用两种不同的方法表示图中阴影部分的面积.

方法①:

方法②:

(2). (1)可得出2 ,4mn这三个代数式之间的一个等量关系为:

(3)利用(2)中得到的公式解决问题:已知2a+b=6,ab=4,试求的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC的角平分线AD交BC于E,交△ABC的外接圆⊙O于D.
(1)求证:△ABE∽△ADC;
(2)请连接BD,OB,OC,OD,且OD交BC于点F,若点F恰好是OD的中点.求证:四边形OBDC是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数y=mx+n与,其中m≠0,n≠0,那么它们在同一坐标系中的图象可能是( )

A B C D

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数y=的图象如图所示,A,P为该图象上的点,且关于原点成中心对称.在△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△PAB的面积大于12,则关于x的方程(a-1)x2-x+=0的根的情况是________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某厂仓库储存了部分原料,按原计划每时消耗2 t,可用60 h.由于技术革新,实际生产能力有所提高,即每时消耗的原料量大于计划消耗的原料量.设现在每时消耗原料x(单位:t),库存的原料可使用的时间为y(单位:h).

(1)写出y关于x的函数解析式,并求出自变量的取值范围;

(2)若恰好经过24 h才有新的原料进厂,为了使机器不停止运转,则x应控制在什么范围内?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列四个结论:①AE∥BC;②∠ADE=∠BDC;③△BDE是等边三角形;④△AED的周长是9.其中正确的结论是(把你认为正确结论的序号都填上.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某运输队要运300 t物资到江边防洪.

(1)运输时间t(单位:h)与运输速度v(单位:t/h)之间有怎样的函数关系式?

(2)运了一半时,接到防洪指挥部命令,剩下的物资要在2 h之内运到江边,则运输速度至少为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系内,一次函数y=ax+b与二次函数y=ax2+2x+b的图象可能是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案