精英家教网 > 初中数学 > 题目详情
14、写出一个顶点在第二象限的二次函数的表达式:y=
(x+1)2+1
分析:选择一个在第二象限的点作为抛物线的顶点,按照顶点式写出二次函数解析式即可.
解答:解:把点(-1,1)作为抛物线的顶点,
则二次函数解析式可表示为y=a(x+1)2+1.本题答案不唯一.
故答案为:(x+1)2+1.
点评:本题考查了二次函数解析式与顶点坐标的关系.二次函数顶点式为y=a(x-h)2+k,顶点坐标为(h,k).
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y=-
2
x
的图象上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.
(1)如图所示,若反比例函数解析式为y=-
2
x
,P点坐标为(1,0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标;M1的坐标是
 

(2)请你通过改变P点坐标,对直线M1M的解析式y﹦kx+b进行探究可得k﹦
 
,若点P的坐标为(m,0)时,则b﹦
 

(3)依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知点A(2,4)在反比例函数y=
k
x
(x>0)
的图象S1上,将双曲线S1沿y轴翻折后得到的是反比例函数y=-
k
x
的图象S2,直线AB交y轴于点B(0,3),交x轴于点C,P为线段BC上的一个动点(点P与B、C不重合),过P作x轴的垂线与双曲线S2在第二象限相交于点E.
(1)求双曲线S2和直线AB的解析式;
(2)设点P的横坐标为m,线段PE的长为h,求h与m之间的函数关系,并写出自变量m的取值范围;
(3)在线段BC上是否存在点P,使得P、E、A为顶点的三角形与△BOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,O是坐标原点,点C的坐标为(0,-3),B是射线CO上的一个动点,经过B点的直线交x轴于点A(直线AB总有经过第二、四象限),且OA=2OB,动点P在直线AB上,设点P的纵坐标为m,线段CB的长度为t.
(1)当t=7,且点P在第一象限时,连接PC交x轴于点D.
①直接写出直线AB的解析式;
②当CD=PD时,求m的值;
③求△ACP的面积S.(用含m的代数式表示)
(2)是否同时存在m、t,使得由A、C、O、P为顶点组成的四边形是等腰梯形?若存在,请求出所有满足要求的m、t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•贵阳模拟)阅读下列材料:
已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y=-
2x
的图象上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形一定有两个,如图所示,并且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.
(1)若P点坐标为(1,0),请你写出:M的坐标是
(2,-1)
(2,-1)

(2)若点P的坐标为(m,0),求直线M1M的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年浙江省杭州市绿城育华学校九年级(上)月考数学试卷(9月份)(解析版) 题型:解答题

已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y=-的图象上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.
(1)如图所示,若反比例函数解析式为y=-,P点坐标为(1,0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标;M1的坐标是______.
(2)请你通过改变P点坐标,对直线M1M的解析式y﹦kx+b进行探究可得k﹦______,若点P的坐标为(m,0)时,则b﹦______;
(3)依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.

查看答案和解析>>

同步练习册答案