【题目】如图,二次函数y=ax2+bx+c的图象过点A(3,0),对称轴为直线x=1,给出以下结论:①abc<0;②b2﹣4ac>0;③a+b+c≥ax2+bx+c;④若M(x2+1,y1)、N(x2+2,y2)为函数图象上的两点,则y1<y2,其中正确的是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
【答案】A
【解析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
∵抛物线开口向下,
a<0;
∵抛物线的对称轴为直线x=-=1>0,
∴b>0;
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,故①正确;
∵抛物线与x轴有两个交点,
∴b2-4ac>0,故②正确;
∵抛物线的对称轴是x=1,与x轴的一个交点是(3,0),
∴抛物线与x轴的另个交点是(-1,0),
∴当x=1时,y最大,即a+b+c≥ax2+bx+c,故③正确;
∵B(x2+1,y1)、C(x2+2,y2)在对称轴右侧,x2+1<x2+2,
∴y1>y2,故④错误;
故选A.
科目:初中数学 来源: 题型:
【题目】一般地,“任意三角形都是自相似图形”,只要顺次连接三角形各边中点,则可将原三角形分割为四个都与它自己相似的小三角形.我们把(图乙)第一次顺次连接各边中点所进行的分割,称为阶分割(如图);把阶分割得出的个三角形再分别顺次连接它的各边中点所进行的分割,称为阶分割(如图)…,依此规则操作下去.阶分割后得到的每一个小三角形都是全等三角形(为正整数),设此时小三角形的面积为.请写出一个反映,,之间关系的等式________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)直线BE与AD的位置关系是 ;BE与AD之间的距离是线段 的长;
(2) 若AD=6cm,BE=2cm.,求BE与AD之间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,AB=AC,△ABC的三个顶点在互相平行的三条直线l1,l2,l3上,且l1,l2之间的距离是1,l2,l3之间的距离是2,则BC的长度为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,小兰用尺规作图作△ABC边AC上的高BH,作法如下:
①分别以点DE为圆心,大于DE的一半长为半径作弧两弧交于F;
②作射线BF,交边AC于点H;
③以B为圆心,BK长为半径作弧,交直线AC于点D和E;
④取一点K使K和B在AC的两侧;
所以BH就是所求作的高.其中顺序正确的作图步骤是( )
A.①②③④B.④③①②C.②④③①D.④③②①
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】基本事实:两角及其夹边分别相等的两个三角形全等(简称).请你在此基础上解决下面问题:
(1)叙述三角形全等的判定方法中的;
(2)证明.要求:叙述要用文字表达;用图形中的符号表达已知、求证,并证明,证明时各步骤要注明依据.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据下列问题,列出关于的方程,并将其化成一元二次方程的一般形式.
(1)4个完全相同的正方形的面积之和是25,求正方形的边长.
(2)一个矩形的长比宽多2,面积是100,求矩形的长.
(3)一个直角三角形的斜边长为10,两条直角边相差2,求较长的直角边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是△ABC的角平分线,过点D向AB,AC两边作垂线,垂足分别为E,F,那么下列结论中不一定正确的是( )
A. BD=CD B. DE=DF C. AE=AF D. ∠ADE=∠ADF
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com