精英家教网 > 初中数学 > 题目详情
在半径为1的⊙O中,弦AB、AC分别是,则∠BAC的度数为   
【答案】分析:由题意,半径为1,弦AB、AC分别是
作OM⊥AB,ON⊥AC;利用余弦函数,可求出∠OAM=45°,∠OAN=30°;
AC的位置情况有两种,如图所示;故∠BAC的度数为45°+30°或45°-30°.问题可求.
解答:解:作OM⊥AB,ON⊥AC;由垂径定理,可得AM=,AN=
∵弦AB、AC分别是,∴AM=,AN=
∵半径为1∴OA=1;
=∴∠OAM=45°;同理,∵=,∴∠OAN=30°;
∴∠BAC=∠OAM+∠OAN或∠OAM-∠OAN
∴∠BAC=75°或15°.

点评:本题综合性强,关键是画出图形,作好辅助线,利用垂径定理和直角三角形的特殊余弦值求得角的度数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在半径为5的圆中,弧所对的圆心角为90°,则弧所对的弦长是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

9、在半径为9cm的圆中,60°的圆心角所对的弦长为
9
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

在半径为1的圆中,弦AB、AC分别
3
2
,则∠BAC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

在半径为l的⊙O中,弦AB,AC分别是
3
2
,则∠BAC的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

在半径为2的圆中,已知弦的长为2
3
,则这条弦与圆心的距离为
1
1

查看答案和解析>>

同步练习册答案