【题目】已知y关于x的二次函数:y=(m﹣n)x2+nx+t﹣n.
(1)当m=t=0时,判断该函数图象和x轴的交点个数;
(2)若n=t=3m,当x为何值时,函数有最值;
(3)是否存在实数m和t,使该函数图象和x轴有交点,且n的最大值和最小值分别为8和4?若存在,求m和t值;若不存在,请说明理由.
【答案】(1)见解析(2)x=函数有最大值为 (3) 不存在实数m和t,使该函数图象和x轴有交点
【解析】试题分析:(1)利用判别式求交点个数.(2)化简二次函数,配方,求最值.(3)配方求最值,最值用n,m,t表示,假设且n的最大值和最小值分别为8和4,代入求m,t,无解.
试题解析:
(1)当m=t=0时,y=﹣nx2+nx﹣n,
△=n2﹣4×(﹣)n×(﹣n)=﹣n2,
当n=0时,△=0,该函数图象与x轴有1个交点;
当n≠0时,△<0,该函数图象与x轴没有交点;
(2)若n=t=3m,抛物线的解析式为:y=(m﹣3m)x2+3mx=﹣mx2+3mx=﹣m(x﹣)2+,
当﹣m>0,即m<0时,
所以当x=时,函数有最小值为,
当﹣m<0,即m>0时,
所以当x=时,函数有最大值为;
(3)y=(m﹣n)x2+nx+t﹣n,
△=n2﹣4×(m﹣n)(t﹣n)=﹣n2+2(m+t)n﹣2mt,
设w=﹣n2+2(m+t)n﹣2mt,
∵该函数图象和x轴有交点,
∴w≥0,
∵n的最大值和最小值分别为8和4,
∴新二次函数w与n轴有两个交点为(4,0)和(8,0),
则w=﹣(n﹣4)(n﹣8)=﹣n2+12n﹣32,
∴,
,
此方程组无实数解,
∴不存在实数m和t,使该函数图象和x轴有交点.
科目:初中数学 来源: 题型:
【题目】学校初一年级参加社会实践课,报名第一门课的有x人,第二门课的人数比第一门课的少20人,现在需要从报名第二门课的人中调出10人学习第一门课,那么用含x的式子解答下题.
(1)报两门课的共有多少人?
(2)调动后,报名第一门课比报名第二门课多多少人?计算出代数式后,请选择一个你觉得合适的x值代入,并求出具体人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,过点C(1,3)、D(3,1)分别作x轴的垂线,垂足分别为A、B.
(1)求直线CD和直线OD的解析式;
(2)点M为直线OD上的一个动点,过M作x轴的垂线交直线CD于点N,是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;
(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中,设平移距离为t,△AOC与△OBD重叠部分的面积记为s,试求s与t的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级、班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩满分为100分如图所示.
平均数 | 中位数 | 众数 | |
九班 | 85 | 85 | |
九班 | 80 |
根据图示填写表格;
结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;
如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从2开始,连续的偶数相加,它们和的情况如下表:
加数的个数n | S |
1 | 2=1×2 |
2 | 2+4=6=2×3 |
3 | 2+4+6=12=3×4 |
4 | 2+4+6+8=20=4×5 |
5 | 2+4+6+8+10=30=5×6 |
(1)若n=8时,则S的值为_____________.
(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=__________________.
(3)根据上题的规律计算2+4+6+8+10+…+98+100的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.
(1)求甲、乙两种商品每件的价格各是多少元?
(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么,最多可购买多少件甲种商品?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(阅读理解题)在解分式方程时,小明的解法如下:
解:方程两边都乘以x﹣3,得2﹣x=﹣1﹣2①.移项得﹣x=﹣1﹣2﹣2②.解得x③.
(1)你认为小明在哪一步出现了错误? (只写序号),错误的原因是 .
(2)小明的解题步骤完善吗?如果不完善,说明他还缺少哪一步?答: .
(3)请你解这个方程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,湿地景区岸边有三个观景台、、.已知m, m,点位于点的南偏西60. 7°方向,点位于点的南偏东66. 1°方向.
(1)求的面积;
(2)景区规划在线段的中点处修建一个湖心亭,并修建观景栈道.试求、间的距离.(结果精确到0. 1 m,参考数据: , , , , , , )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.
(1)用含x的代数式表示线段CF的长;
(2)如果把△CAE的周长记作C△CAE,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;
(3)当∠ABE的正切值是时,求AB的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com