精英家教网 > 初中数学 > 题目详情

【题目】如图,点D为△ABCAB边上的中点,点EAD的中点,△ADC为正三角形,给出下列结论,①CB2CE,②tanB,③∠ECD=∠DCB,④若AC2,点PAB上一动点,点PACBC边的距离分别为d1d2,则d12+d22的最小值是3.其中正确的结论是____(填写正确结论的序号)

【答案】①③④

【解析】

根据中点的性质得到ADBD,根据等边三角形的性质得到ADCDADC=ACD=60°CEABDCE30°,根据等量代换有CDBD,根据等腰三角形的性质得到∠BDCB30°,即可判断①②③,根据勾股定理可知d12+d22MN2CP2根据垂线段最短,则当CPAB时,d12+d22的值最小,即可判断.

DAB中点

ADBD

∵△ACD是等边三角形,EAD中点

ADCDADC=ACD =60°CEABDCE30°

CDBD

∴∠BDCB30°,且DCE30°CEAB

∴∠ECDDCBBC2CEtanB

①③正确,错误

∵∠DCB30°ACD60°

∴∠ACB90°

AC2,点PAB上一动点,点PACBC边的距离分别为d1d2

四边形PMCN是矩形

MNCP

d12+d22MN2CP2

CP为最小值,d12+d22的值最小

根据垂线段最短,则当CPAB时,d12+d22的值最小

此时:CAB60°AC2CPAB

CP,

d12+d22MN2CP23

d12+d22的最小值为3

正确

故答案为①③④

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A的坐标为(5,0),点B的坐标为(8,4),点C的坐标为(3,4),连接AB、BC、OC

(1)求证四边形OABC是菱形;

(2)直线l过点C且与y轴平行,将直线l沿x轴正方向平移,平移后的直线交x轴于点P.

①当OP:PA=3:2时,求点P的坐标;

②点Q在直线1上,在直线l平移过程中,当COQ是等腰直角三角形时,请直接写出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、价价各几何?“其大意是:今有人合伙买羊,若每人出5,还差45钱;若每人出7钱,还差3钱,问:合伙人数、羊价各是多少?设合伙人数为人,羊价为,根据题意,可列方程组( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB是⊙O的的直径,弦CDAB相交,∠BCD=25°

1)如图1,求∠ABD的大小;

2)如图2,过点DO的切线,与AB的延长线交于点P,若DPAC,求∠OCD的度数。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知中, DAB边的中点,EAC边上一点,联结DE,过点DBC边于点F,联结EF

(1)如图1,当时,求EF的长;

(2)如图2,当点EAC边上移动时, 的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出的正切值;

(3)如图3,联结CDEF于点Q,当是等腰三角形时,请直接写出BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b分别交y轴、x轴于C、D两点,与反比例函数y=(x>0)的图象交于A(m,8),B(4,n)两点.

(1)求一次函数的解析式;

(2)根据图象直接写出kx+b﹣<0x的取值范围;

(3)求AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈,cos53°≈,tan53°≈)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+5(k为常数,且k≠0)的图象与反比例函数y=﹣8x-1的函数交于A(﹣2,b),B两点.

(1)求一次函数的表达式;

(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.

查看答案和解析>>

同步练习册答案