为了解居民用水情况,晓娜在某小区随机抽查了10户家庭的月用水量,结果如下表:
月用水量(吨) | 5 | 6 | 7 | 8 | 9 | 10 |
户数 | 1 | 1 | 2 | 2 | 3 | 1 |
则这10户家庭的月用水量的平均数和众数分别是
A.7.8,9 B.7.8,3 C.4.5,9 D.4.5,3
科目:初中数学 来源: 题型:
如图,平行四边形纸片ABCD,CD=5,BC=2,∠A=60°,将纸片折叠,使点A落在射线AD上(记为点),折痕与AB交于点P,设AP的长为x,折叠后纸片重叠部分的面积为y,可以表示y与x之间关系的大致图象是( )
|
查看答案和解析>>
科目:初中数学 来源: 题型:
在平面直角坐标系xOy中,已知 A(-2,0),B(2,0),AC⊥AB于点A,AC=2,BD⊥AB于点B,BD=6,以AB为直径的半圆O上有一动点P(不与A、B两点重合),连接PD、PC,我们把由五条线段AB、BD、DP、PC、CA所组成的封闭图形ABDPC叫做点P的关联图形,如图1所示.
(1)如图2,当P运动到半圆O与y轴的交点位置时,求点P的关联图形的面积.
(2)如图3,连接CD、OC、OD,判断△OCD的形状,并加以证明.
(3)当点P运动到什么位置时,点P的关联图形的面积最大,简要说明理由,并求面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
在平面直角坐标系xOy中,一次函数的图象与反比例函数的图象的一
个交点为A(1,).
(1)求反比例函数的解析式;
(2)若P是坐标轴上一点(P不与O重合),且满足,直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,正方形ABCD的边长是2,M是AD的中点.点E从点A出发,沿AB运动到
点B停止.连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G,连接EG、FG.
(1)设AE=x时,△EGF的面积为y.求y关于x的函数关系式,
并写出自变量x的取值范围;
(2)P是MG的中点,求点P运动路线的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C两点处测得该塔顶端F的仰角分别为∠α=48°,∠β=65°,矩形建筑物宽度AD=20 m,高度DC=33 m.计算该信号发射塔顶端到地面的高度FG(结果精确到1m).(参考数据:sin48°≈0.7,cos48°≈0.7,tan48°≈1.1,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com